
Online Learning of Linear-Quadratic
Regulators

Master Thesis

Lenart Treven

Monday 28th September, 2020

Advisors: Sebastian Curi, Mojmir Mutny, Prof. Dr. A. Krause

Department of Computer Science, ETH Zürich

Abstract

We present different approaches for learning stabilizing controllers for
Linear Quadratic Regulators (LQR) with unknown system matrices. As-
suming Gaussian prior over system parameter we derive consistent
data dependent estimation error upper bounds. Given estimates of
system matrices and a ellipsoid confidence region around them we de-
rive 2 convex semi-definite programs (SDPs) which feasible solutions
stabilize all systems in the confidence region. To derive the first SDP
we start from a sufficient condition for stabilization obtained from Sys-
tem Level Synthesis (SLS) by Dean et al. (2017) and then sequentially
apply robust S-lemma and Kalman-Yakubovich-Popov (KYP) lemma to
transform the sufficient condition to a convex SDP. The second SDP we
obtain by applying S-lemma to a version of SDP which finds the opti-
mal solution in the case we know system matrices. We further show
that the obtained SDPs are equivalent in the sense that as soon as one
SDP is feasible the other is feasible as well. Next we introduce an al-
gorithm eXploration which provably finds a stabilizing controller for
regular systems in finite time. We show how we can use eXploration as
an initialization to algorithms which achieve O(

√
T) regret but need a

stabilizing controller as an input. We further propose different heuris-
tics which try to stabilize the system even before we have a guarantee
for that.

i

Acknowledgments

First and foremost, I would like to thank my advisers Sebastian Curi
and Mojmir Mutny for their advice and support throughout my Master
Thesis journey. Your ideas, discussions we had and feedback you gave
me made the thesis possible. Thank you a lot! Further I would like
to thank Prof. Dr. Andreas Krause for help and suggestions on the
presentation of ideas.

Next I would like to thank Johannes Bäumler and Metod Jazbec for the
various discussion we had about problems I encountered during the
thesis work. Your views on the problems gave me plenty of ideas.

Finally, I would like to thank my family for supporting and encourag-
ing me during my studies.

ii

Contents

Contents iii

1 Introduction 5
1.1 Problem setting . 6
1.2 Related Work . 8
1.3 Structure of the thesis . 10

2 Preliminaries 13
2.1 Benchmark class . 13

2.1.1 Value function . 13
2.1.2 Infinite horizon . 15
2.1.3 Cost comparison . 18

2.2 System Level Synthesis . 18
2.2.1 LQR in the language of System Level Synthesis 19
2.2.2 H∞ constraint to semi-definite constraint 22

2.3 Tools from Probability and Linear Algebra 23
2.3.1 Probabilistic bounds . 23
2.3.2 Results from Linear Algebra 25

2.4 Linear system identification . 27
2.5 Optimal infinite horizon policy via SDP 29

3 Find stabilizing controller 31
3.1 Data driven estimation error 32

3.1.1 Bayesian view . 32
3.1.2 Self Normalizing Processes 37

3.2 Robust control synthesis . 40
3.2.1 Robust controller from SLS 40
3.2.2 Robust controller from SDP 44

3.3 But they are the same . 46
3.4 Minimize spectral norm of closed loop system 49

iii

Contents

3.5 Feasibility conditions . 50
3.6 eXploration termination . 51

4 eXploration as initialization 55
4.1 Initialization of OSLO . 55

4.1.1 Strong stability parameters from robust SDP 56
4.1.2 Adjusted Warm Up . 57

4.2 Initialization of CEC . 63

5 Improved eXploration strategies 65
5.1 Inconsistency of OLS in case dx > 1 66
5.2 Convergence in the constrained case 67

6 Numerical experiments 73
6.1 Comparison of error bounds 73
6.2 Control before stabilization . 75
6.3 Stabilizing region . 78
6.4 Comparison of CE and robust controller 80

7 Discussion and outlook 85

A Supporting results 87
A.1 Elementary calculations . 87
A.2 Dual problems . 88
A.3 Worst CE performing system 90

Bibliography 93

iv

Notation

Sets and Topology
Cl(X) Closure of set X
Int(X) Interior of set X
D Unit complex ball i.e. {z ∈ C; |z| < 1}
N, R, C Set of natural, real and complex numbers
∂X Boundary of set X
Bd

p(r) p-ball in Rd with radius r defined as {v ∈ Rd; ‖v‖p < r}
Sd−1 Unit sphere in Rd i.e. {v ∈ Rd; ‖v‖2 = 1}
Vectors
‖v‖M Norm defined as ‖v‖M =

√
v>Mv

‖v‖p `p norm of vector v
x, u, v, . . . Vectors
Matrices
〈A, B〉 Tr(A>B)
κ(A) Conditional number of matrix A
λi(M) i-th largest eigenvalue of symmetric matrix M
Sd
++(Sd

+) Set of d× d positive definite (semi-definite) matrices
‖A‖∗ Nuclear norm
‖A‖2 Spectral norm
‖A‖F Frobenious norm
‖A‖M Matrix norm defined as ‖A‖M = maxv∈Sd−1 ‖Av‖M

rank(A) Rank of matrix A
ρ(A) Spectral radius of matrix A
σi(A) i-th largest singular value of matrix A
Tr(A) Trace of matrix A
A ≺ B B− A ∈ Sd

++

1

Contents

A � B B− A ∈ Sd
+

A, B, . . . Matrices
A† Moore–Penrose inverse of matrix A
A> Transpose of matrix A
A∗, B∗ System matrices
In Identity matrix of size n× n
Probability
E[X] Expected value of X
P(A) Probability of event A
O notation
O(f) {g : R→ R; ∃M, x0, s.t. ∀x ≥ x0 : g(x) ≤ M f (x)}
Ω(f) {g : R→ R; ∃M, x0, s.t. ∀x ≥ x0 : g(x) ≥ M f (x)}
ω(f) {g : R→ R; limx→∞

∣∣∣ f (x)
g(x)

∣∣∣ = 0}
Θ(f) {g : R→ R; g ∈ O(f) ∩Ω(f)}
o(f) {g : R→ R; limx→∞

∣∣∣ g(x)
f (x)

∣∣∣ = 0}

2

Abbreviations

CE Certainty equivalent
CEC Certainty equivalent controller
LQ Linear Quadratic
LQR Linear Quadratic Regulator
OFU Optimism in the face of uncertainty
OLS Ordinary Least Squares
OSLO Optimistic Semi-definite programming for Lq cOntrol
RLS Regularized Least Squares
SDP Semi-definite program
SLS System Level Synthesis

3

Chapter 1

Introduction

Dynamical systems are ubiquitous in real world applications, ranging from
autonomous robots (Ribeiro et al., 2017), energy systems (Haddad et al.,
2005) to manufacturing (Singh, 2010). Control theory (Trentelman et al.,
2001) seeks to find an optimal input to the system to ensure a desired be-
havior while suffering low cost. In particular, linear dynamical systems with
quadratic costs can model a variety of practical problems (Tornambè et al.,
1998), and enjoy an elegant solution referred to as Linear Quadratic Regulator
(LQR), whose history goes back to Kalman (1960).

Despite the long and rich history of the LQR problem, learning dynamical
systems and their optimal controllers is still an actively studied problem. On
one hand, there are systems that can be reset to an initial condition. For such
systems, the multiple-trajectory (episodic) setting is natural and exploration
costs can be controlled by resetting the system. This setting is well studied
and efficient algorithms rely on certainty equivalent control (CEC) (Mania et al.,
2019). On the other hands, other systems cannot be reset and must thus be
learnt online from a single trajectory. In this setting, the OSLO algorithm (Co-
hen et al., 2019) is provably efficient. It is based on the optimism-in-the-face-
of-uncertainty (OFU) principle, whereas epsilon-greedy (certainty equiva-
lent with additive random noise) is also provably efficient (Simchowitz and
Foster, 2020). Crucially, both algorithms require prior knowledge in form
of an initial stabilizing controller. This privileged information is essential to
ensure that unstable systems do not “explode”. However, such prior knowl-
edge is not always available. In this thesis we deal with the question how to
find a stabilizing controller with as little prior information as possible. We
show that assuming independent Gaussian prior over system parameters is
enough to show that we can find a controller which stabilizes the underlying
system in constant time.

5

1. Introduction

1.1 Problem setting

Even though in many applications the agent is driven around the space in
non linear manner, the setting of Linear Quadratic Regulators assumes linear
system dynamics. We assume the system is driven by recursive equation:

xi+1 = A∗xi + B∗ui + wi+1, x0 = 0 (1.1)

where xi ∈ Rdx is state of the system, ui ∈ Rdu is action which we choose at

time i and wi is an independent Gaussian noise – (wi)i≥1
i.i.d.∼ N (0, σ2

w I). We
denote by W = σ2

w I and d = dx + du. The transition matrices A∗ and B∗ are
of the appropriate dimensions. We further denote by Fi = σ((wj)j≤i, (xj)j≤i)
the filtration generated by the noise and states up to time i and assume that
ui ∈ Fi. At every time step the system incurs a loss c(xi, ui) which is defined
as

c(xi, ui) = x>i Qxi + u>i Rui,

where Q ∈ Rdx×dx , R ∈ Rdu×du are symmetric positive semi-definite matri-
ces. We call any mapping π, which maps at every time step i the history
{(xj)j≤i, (uj)j<i} to an action ui, a policy. Playing policy π for s steps the
total cost we suffer is equal to:

C(s, π) = ∑
i≤s

c(xi, ui).

Due to the noise (wi)i≤s and potential randomness in action selection, C(s, π)
is a random variable. We are driven by the idea that we would like to suffer
as small cost as possible. Hence we define different measures to asses good-
ness of a policy. The first measure which comes to our mind is expected
s-steps cumulative cost Ew,uC(s, π). Another measure for policy goodness
is an average expected per step cost if we would run the system forever
defined as J(π) = lim sups→∞

1
s Ew,uC(s, π).

In the setting of the presented work system matrices A∗, B∗ are unknown
at the beginning. However, we would like to learn policies which, despite
limited knowledge of the system, choose such actions that the cost suffered
until time s is as small as possible. To compare the goodness of the policy π
we will define another measure R(s, π) called regret:

R(s, π) = C(s, π)− sJ∗, (1.2)

where J∗ is the minimal infinite horizon expected per step cost attained by
any policy, i.e. J∗ = infπ J(π). Note again that R(s, π) is random variable.
We will further limit ourselves to stabilizable systems A∗, B∗.

Definition 1.1 The system A∗, B∗ is called stabilizable if there exist a matrix
K ∈ Rdu×dx with ρ(A∗ + B∗K) < 1.

6

1.1. Problem setting

For stabilizable systems J∗ is finite and is achieved by policy π∗ which
chooses actions as a fixed linear map of states: ui = K∗xi. We will show
this result in section 2.1.2. We say that the policy has sublinear regret or no
regret with probability 1− δ if the random variable R(s, π) = o(s) with prob-
ability at least 1− δ. To support the idea why we would like to have a policy
with no regret we state next lemma.

Lemma 1.2 If R(s, π) = o(s), then J(π) = J∗.

Proof Since R(s, π) = o(s) we have

lim
s→∞

1
s

R(s, π) = 0.

Rewriting the above equation using eq. (1.2) we obtain:

0 = lim
s→∞

1
s

R(s, π) = lim
s→∞

1
s

C(s, π)− J∗.

From there we conclude:

J∗ = lim
s→∞

1
s

C(s, π) = J(π) �

Lemma 1.2 shows that if we are on the event where R(s, π) = o(s), then the
average per step cost converges towards the optimal one.

Recent works revealed that the optimal regret in the setting where we do
not know matrices A∗, B∗, achieved by any policy π, scales as R(T, π) =
Θ(
√

d2
udxT), where T is the time horizon. However, the algorithm which

achieves optimal regret needs a stabilizing controller as an input. How to
find a stabilizing controller is addressed in the presented thesis. The setting
addressed in the thesis is the following:

1. We run the experiment in a single trajectory for T steps.

2. System matrices A∗, B∗ are unknown at the beginning and we do not
know a stabilizing controller.

3. We have some knowledge about system matrices – we either assume a
priori that our belief about the system is Gaussian, or we assume the
upper bound on the system norm.

4. We propose algorithm eXploration which provably finds a stabilizing
controller in constant time (constant in T).

5. Algorithm eXploration is used as an initialization for algorithms which
require a stabilizing controller as an input.

7

1. Introduction

1.2 Related Work

Regret evolution for stochastic LQR Linear dynamical systems have been
extensively studied in control theory (cf., Zhou et al. (1996)). Here, we focus
on the most closely related recent work on learning LQR controllers. Abbasi-
Yadkori et al. (2011) show an algorithm which achieves O(dd

√
T) regret for

controllable1 systems in single trajectory, where T is the time horizon. Their
algorithm, based on the optimism in the face of uncertainty (OFU) princi-
ple, was inefficient and the dependence on state dimension was exponential.
Ibrahimi et al. (2012) improved the factor of state dimension dependence
in regret to linear. Later, Cohen et al. (2019) introduced an OFU algorithm
called OSLO which is based on semi-definite relaxation. Their OSLO algo-
rithm is efficient and suffers regret O(poly(d)

√
T) which depends polynomi-

ally on the system dimension. However, to run algorithm OSLO we need a
stabilizing controller. How to obtain one was discussed by Dean et al. (2017).
Dean et al. (2017) considered multiple trajectory setting and used SLS frame-
work to derive robust control synthesis problem. In the follow up work
Dean et al. (2018) show that using the robust control synthesis we obtain
O(poly(d)T3/2) regret in the single trajectory setting. Their analysis again
needed a stabilizing controller as an input to the algorithm. Then Mania
et al. (2019) showed that we can obtain O(poly(d)

√
T) regret also by playing

ε-greedily. Their idea was to consider the estimates Â, B̂ of the systems ma-
trices A∗, B∗ as true matrices - they computed the controller K̂ as the optimal
infinite horizon controller if the true system was Â, B̂. 2 The ε-greedy ap-
proach was further studied by Simchowitz and Foster (2020). They show that
the regret in the single trajectory setting is lower bounded by Ω(

√
d2

udxT).
They further showed that by playing ε-greedily we also achieve the regret
O(
√

d2
udxT), hence showing that the optimal regret for LQR in single trajec-

tory setting scales as Θ(
√

d2
udxT). To run their algorithm we again need a

stabilizing controller as an input. A concurrent work of Abeille and Lazaric
(2020) achieved with new OFU algorithm slightly worse dependence on sys-
tem dimension, namely

√
dx(dx + du)2, however with better other system

parameters. Most of the aforementioned algorithms require a stabilizing
controller as an input. In the thesis we develop and analyze an algorithm
which finds a stabilizing controller in the single trajectory setting in finite
time and hence can be used as an initialization to the existing algorithms
without changing the regret rate.

System identification One way to synthesize a stabilizing controller is to
find tight estimates Â, B̂ of the true system matrices A∗, B∗. Shirani Faradon-
beh et al. (2018) showed that for regular systems with eigenvalues every-

1System A, B is called controllable if (B AB · · · Adx−1B) has full row rank.
2This greedy approach is called certainty equivalent (CE). We further denote certainty

equivalent control by CEC.

8

1.2. Related Work

where but unit circle the ordinary least squares (OLS) estimator is consistent.
Further Sarkar and Rakhlin (2018) showed OLS consistency for all regular
systems. They show that the estimation error scales as O(1/

√
s), for gen-

eral systems, where s is the number of steps. At the same time Umenberger
et al. (2019) introduced an ellipsoid region around OLS estimates where the
true system lies with high probability. The computation of their ellipsoid
region is based on maximum likelihood estimation of system parameters.
In the thesis we move to the Bayesian setting and assume Gaussian prior for
system matrices. We derive ellipsoid confidence region around maximum a
posterior (MAP) estimator, which turns out to be regularized least squares
(RLS) estimator. Using the results of Sarkar and Rakhlin (2018) we further
show that the ”radius” of the derived confidence region decrease linearly
with time.

Controller synthesis Using SLS synthesis Dean et al. (2017) derived a SDP
which optimal solution results in a controller which stabilizes the true sys-
tem. They used the proposed SDP with the multiple trajectories system
identification. Faradonbeh et al. (2018) introduced a procedure which finds a
stabilizing controller based on multiple random controllers. Their approach
runs in a single trajectory however the time it takes to find a stabilizing
controller depends on the properties of Jordan transition matrix of the true
system, which are intractable if the system is unknown. Recently Lale et al.
(2020a) showed that the modification of the algorithm proposed by Abbasi-
Yadkori and Szepesvari (2011), where we explore more in the early stage of
the algorithm, also achieves O(poly(d)

√
T) and not only for the controllable

systems but for more general stabilizable systems. While Dean et al. (2017)
derived an SDP which feasible solution stabilizes every system within some
”square” confident region, we derived an SDP (starting from the same SLS
synthesis) which stabilizes every system within some ellipsoid confidence
region, which goes hand in hand with the confidence region obtained from
system identification procedure. We derived another SDP which is based on
the robust version of the SDP that, using the true system matrices, can be
used to compute the optimal policy (c.f. (Cohen et al., 2018)). We show the
feasibility equivalence of the derived SDPs.

Partial observation setting Another line of work deals with the systems
where we do not observe the state xi but only yi = C∗xi + vi, where C∗ is
unknown matrix and vi independent Gaussian noise. System identification
in this case is not uniquely defined, since for any unitary matrix U we would
observe the same response if the system was A′∗ = UA∗U−1, B′∗ = UB∗, C′∗ =
C∗U−1. Works of Oymak and Ozay (2019), Sarkar et al. (2019), Simchowitz
et al. (2019) describes how we can obtain one such representative in the case
of stable or marginally stable A∗. How to obtain the stabilizing controller

9

1. Introduction

when matrix A∗ is potentially unstable in single trajectory is not known.
However, Lale et al. (2020b) showed an algorithm that in the setting with
ρ(A∗) < 1 achieves O(poly(log T)) regret.

Adversarial noise Another line of work which is closely related to our set-
ting is when wi and vi are not necessary stochastic but could be chosen by an
adversary. Simchowitz et al. (2020), Simchowitz (2020) considers this setting
and show that the regret scales also as O(

√
T) in both – partially and fully

observed – cases, given a stabilizing controller. How to find a stabilizing
controller in this setting is described in the concurrent work of Chen and
Hazan (2020).

1.3 Structure of the thesis

We start the thesis by LQR problem description and a survey of the related
work in Chapter 1.

In Chapter 2 we present the results on top of which we then build in the
following chapters. We show the derivation of optimal policy, derive discrete
algebraic Riccati equations, present results from robust control synthesis,
introduce handy results from linear algebra and probability theory, show
finite time identification of linear dynamical systems results of Sarkar and
Rakhlin (2018) and show how we can compute the optimal infinite horizon
policy via semi-definite program (SDP).

In Chapter 3 we first show how we can find data dependent estimation
errors for regularized least squares estimates. Next we propose different
robust SDPs which solutions yield a controller which stabilizes the true sys-
tem with high probability. We also introduce an algorithm eXploration and
prove that it finds a stabilizing controller in finite time.

How to use eXploration as an initialization to algorithms which need a sta-
bilizing controller (OSLO, CEC) as an input is discussed in Chapter 4.

In Chapter 5 we propose different heuristics for action selection which em-
pirically results in faster controller synthesis and smaller blow up of the
system’s state. We further show that with suitable actions selection it can
happen that the estimation procedure can be inconsistent.

In Chapter 6 we show various numerical experiments where we compare
different approaches derived in the Chapter 3. We compare the time it takes
them to find a stabilizing controller and the cost we suffer until that happens.
We further compare robust and CE controller and their stabilizing regions
in the case when system matrices are one dimensional.

10

1.3. Structure of the thesis

We discuss obtained results in Chapter 7. We further propose different open
question which we believe are interesting and relevant and could be ad-
dressed in the future work.

11

Chapter 2

Preliminaries

In this chapter we introduce the background theory which we extensively
use in chapters 3 to 5.

2.1 Benchmark class

The goal of this section is to derive the optimal policies for finite and infinite
horizon in the case when we know matrices A∗, B∗. We will see that in both
cases the best policy is to choose actions which are linear maps of state.

2.1.1 Value function

First we consider finite horizon setting, where we would like to find actions
(ui)i<T such that the cost:

C(T, π) = E

[
T−1

∑
i=0

x>i Qxi + u>i Rui + x>T QFxT

]
(2.1)

is minimal. Here QF ∈ Rdx×dx is a positive semi-definite matrix. In the
setting introduced above QF was equal to Q, here we consider a bit more
general setting. In order to find the policy which minimize the C(T, π) given
by eq. (2.1) we define, following Boyd (2009), for t = 0, . . . , T value functions
Vt : Rdx → R as:

Vt(z) = min
(uj)

T−1
j=t

E

[
T−1

∑
i=t

x>i Qxi + u>i Rui + x>T QFxT

]
s.t. xt = z, xi+1 = A∗xi + B∗ui + wi+1, i = t, . . . , T − 1.

(2.2)

The goal is to obtain V0(0) since this is the minimal expected T-step cost
defined in eq. (2.1). In order to find V0 we will first find VT and then recur-
sively find Vt running backwards in time. First observe that VT(z) = z>QFz,

13

2. Preliminaries

since we do not have anything to optimize over. Next observe the recursive
nature of the problem:

Vt(z) = z>Qz + min
u

(
u>Ru + EVt+1(A∗z + B∗u + wt+1)

)
. (2.3)

We make an induction hypothesis, where we claim that Vt is of the from
Vt(z) = z>Ptz + qt for t = 0, . . . , T. The explicit values of Pt and qt will
be given during calculations. The base of the induction is fulfilled with
PT = QF and qT = 0. Assume now Vt+1(z) = z>Pt+1z + qt+1. We will find
the minimal value given in eq. (2.3). We first use induction hypothesis to
obtain:

u>Ru + EVt+1(A∗z + B∗u + wt+1)

=u>Ru + (A∗z + B∗u)>Pt+1(A∗z + B∗u) + 〈Pt+1, W〉+ qt+1

To find the minimal value we set the derivative of the last expression over u
to zero and obtain:

2Ru + 2B>∗ Pt+1B∗u + 2B>∗ Pt+1A∗z = 0

=⇒ u = −(R + B>∗ Pt+1B∗)−1B>∗ Pt+1A∗z

Plugging the optimal u to the expression given by eq. (2.3) we obtain after
some elementary calculations given by lemma A.1:

Vt(z) = z>Ptz + qt,

where:

Pt = Q + A>∗ Pt+1A∗ − A>∗ Pt+1B∗(R + B>∗ Pt+1B∗)−1B>∗ Pt+1A∗,
qt = 〈Pt+1, W〉+ qt+1.

(2.4)

With that we finished the induction step. We showed that in order to mini-
mize the expected T-step cost C(T, π) it is optimal to choose actions

ut = Ktxt, (2.5)

where

Kt = −(R + B>∗ Pt+1B∗)−1B>∗ Pt+1A∗z,

Pt = Q + A>∗ Pt+1A∗ − A>∗ Pt+1B∗(R + B>∗ Pt+1B∗)−1B>∗ Pt+1A∗, PT = QF

At the same time it follows from eq. (2.4) that the minimal expected T-step
cost C(T, π) is equal to:

Cπ(T) = V0(0) = q0 =
T

∑
i=1
〈Pi, W〉

14

2.1. Benchmark class

Remark 2.1 As a byproduct of the presented analysis we obtain that for every
z ∈ Rdx :

min
K

z>
(

Q + K>RK + (A∗ + B∗K)>Pt+1(A∗ + B∗K)
)

z = z>Ptz,

and minimum is attained at K = Kt.

2.1.2 Infinite horizon

In section 2.1.1 we ran the computation backwards – we first computed PT
and then we went backwards in time and compute Pt for t = T − 1, T −
2, . . . , 1, 0. The idea of this section is to send T towards the infinity and
study the behavior of P0. The problem is equivalent to the problem where
we set P0 = QF, define

Pt+1 = Q + A>∗ Pt A∗ − A>∗ PtB∗(R + B>∗ PtB∗)−1B>∗ Pt A∗, (2.6)

run the recursion forward in time and analyze the behavior of limt→∞ Pt.
In this section we denote Kt = −(R + B>∗ PtB∗)−1B>∗ Pt A∗.The results in this
section mainly follows the discussion in chapter 4.3 of Anderson and Moore
(1979). We will show the following theorem.

Theorem 2.2 Let (A∗, B∗) be stabilizable and Q � 0. Further let P0 be arbitrary
positive semidefinite matrix and let Pt evolve via eq. (2.6). Then we have:

1. There exist positive definite matrix P∗ with: limt→∞ Pt = P∗.

2. P∗ is the unique positive definite solution of the discrete algebraic Riccati
equation:

P∗ = Q + A>∗ P∗A∗ − A>∗ P∗B∗(R + B>∗ P∗B∗)−1B>∗ P∗A∗.

3. Denote by K∗ = −(R + B>∗ P∗B∗)−1B>∗ P∗A∗, then ρ(A∗ + B∗K∗) < 1 and

‖Pt − P∗‖2 ≤ O
(
ρ(A∗ + B∗K∗)t) .

As we can see the speed of convergence is exponential. The latter observa-
tion will be crucial in the comparison between best infinite horizon policy
with the finite one.

Proof The outline of the proof is the following. We first show boundedness
of Pt for any fixed initial matrix P0 (the bound indeed depends on the P0).
Then we show that if we choose P0 = 0, the sequence Pt is monotonically
increasing (in Loewner order) and hence it has a limit. Then we show that in
the limit we have ρ(A∗ + B∗K∗) < 1 and that the convergence is exponential.
We finish the proof by showing the convergence for arbitrary initial positive
semidefinite matrix P0.

15

2. Preliminaries

To show boundedness of Pt take controller K with ρ(A∗ + B∗K) < 1 and
consider the sequence of matrices (P′t)t≥0 defined as:

P′0 = P0,

P′t+1 = Q + K>RK + (A∗ + B∗K)>P′t (A∗ + B∗K), t = 0,
(2.7)

We will show that Pt � P′t by induction. Since P0 = P′0 the base of the
induction holds. By remark 2.1 we have for every z ∈ Rdx :

z>P′t+1z = z>
(

Q + K>RK + (A∗ + B∗K)>P′t (A∗ + B∗K)
)

z

I.H.
≥ z>

(
Q + K>RK + (A∗ + B∗K)>Pt(A∗ + B∗K)

)
z

≥ min
K

z>
(

Q + K>RK + (A∗ + B∗K)>Pt(A∗ + B∗K)
)

z

= z>Pt+1z.

Since z was arbitrary we showed that for every t we have Pt � P′t . Since
ρ(A∗ + B∗K) < 1 and we have the recursive relation for P′t given by eq. (2.7)
it follows that there exist M such that for every t we have ‖Pt‖2 ≤ ‖P′t‖2 ≤ M.
Now we prove by induction that if we choose P0 = 0, then Pt � Pt+1 for
every t. Since P0 = 0 and P1 = Q, we have P0 � P1, hence the induction base
holds. Since for every z ∈ Rdx :

z>Pt+1z = min
K

z>
(

Q + K>RK + (A∗ + B∗K)>Pt(A∗ + B∗K)
)

z

I.H.
� min

K
z>
(

Q + K>RK + (A∗ + B∗K)>Pt−1(A∗ + B∗K)
)

z

= z>Ptz,

we conclude Pt+1 � Pt. Since the sequence of matrices (Pt)t≥0 is increasing
(in Loewner order) and is bounded it has a limit which we denote by P∗.
Taking the limit in eq. (2.6) we obtain:

P∗ = Q + A>∗ P∗A∗ − A>∗ P∗B∗(R + B>∗ P∗B∗)−1B>∗ P∗A∗. (2.8)

Now we will show that ρ(A∗ + B∗K∗) < 1. For that consider the equation
equivalent to eq. (2.8):

P∗ = Q + K>∗ RK∗ + (A∗ + B∗K∗)>P∗(A∗ + B∗K∗)

Take the eigenpair (λ, v) of matrix A∗+ B∗K∗ with the largest absolute eigen-
value. We have:

vHP∗v = vHQv + vHK>∗ RK∗v + |λ|2 vHP∗v

⇐⇒ (1− |λ|2)vHP∗v = vHQv + vHK>∗ RK∗v > 0.

16

2.1. Benchmark class

Hence |λ| < 1. Next we will show that for any P0 = ρI we have limt→∞ Pt =
P∗. For that observe:

Pt+1 = Q + K>t RKt + (A∗ + B∗Kt)
>Pt(A∗ + B∗Kt)

� (A∗ + B∗Kt)
>Pt(A∗ + B∗Kt)

� (A∗ + B∗Kt)
>(A∗ + B∗Kt−1)

>Pt−1(A∗ + B∗Kt−1)(A∗ + B∗Kt)

...

� Ψ>t P0Ψt = ρΨ>t Ψt,

where Ψt = (A∗ + B∗K0)(A∗ + B∗K1) · · · (A∗ + B∗Kt). Since ‖Pt+1‖2 ≤ M
for every t, the elements of the sequence (Ψt)t≥0 are bounded. Now we will
show that the sequence (Pt)t≥0 starting at P0 = ρI converges towards P∗. For
that observe the following relation which is proved in lemma A.2:

Pt+1 − P∗ = (A∗ + B∗K∗)>(Pt − P∗)(A∗ + B∗Kt)

=
(
(A∗ + B∗K∗)t)> (P0 − P∗)Ψt.

Since (P0 − P∗)Ψt is bounded and ρ(A∗ + B∗K∗) < 1 we have

lim
t→∞
‖Pt+1 − P∗‖2 = lim

t→∞
O
(
ρ(A∗ + B∗K∗)t) = 0.

We will finish the proof by showing the convergence of sequence (Pt)t≥0
for arbitrary positive semidefintie matrix P0 towards P∗. For that consider
sequences: (Pl

t)t≥0, (Pt)t≥0, (Pu
t)t≥0, where Pl

0 = 0, P0 = P0, Pu
0 = ρI, where

ρ = ‖P0‖2. All sequences follow the recursive equation given by eq. (2.6).
We will show by induction that for every t we have: Pl

t � Pt � Pu
t . The

base case Pl
0 � P0 � Pu

0 follows from definition. Using the relation from
remark 2.1 we obtain for every z ∈ Rdx :

z>Pl
t+1z = min

K
z>
(

Q + K>RK + (A∗ + B∗K)>Pl
t (A∗ + B∗K)

)
z

≤ min
K

z>
(

Q + K>RK + (A∗ + B∗K)>Pt(A∗ + B∗K)
)

z = z>Pt+1z

≤ min
K

z>
(

Q + K>RK + (A∗ + B∗K)>Pu
t (A∗ + B∗K)

)
z = z>Pu

t+1z.

Therefore we have Pl
t � Pt � Pu

t for every t. Since Pl
t , Pu

t both converge to P∗
also Pt converges to P∗. �

Since by letting T towards infinity the expected T-step cost C(T, π) diverges
we use the notion of expected average per step cost J(π) to measure the
performance in this regime. From theorem 2.2 follows that the policy, where
we play ui = K∗ui, minimizes the infinite horizon expected per step cost
J(π).

17

2. Preliminaries

2.1.3 Cost comparison

In the setting where the matrices A∗, B∗ are unknown we measure the perfor-
mance of the policy via regret. In the eq. (1.2) we defined the regret R(s, π)
as the difference between the cost suffered by the policy π and sJ∗. However
as we have seen in section 2.1.1, when the system evolves for s steps it is
optimal to play ui = Kixi and the minimal expected incurred cost is equal
to ∑s

i=1 〈Pi, W〉. Hence one could ask why don’t we compare in the defini-
tion of the regret the cost incurred by the policy with the minimal expected
s-step cost. The answer lies in the following computation:

s 〈P∗, W〉 −
s

∑
i=1
〈Pi, W〉 =

s

∑
i=1
〈P∗ − Pi, W〉

≤
s

∑
i=1
‖P∗ − Pi‖2 ‖W‖∗

≤ ‖W‖∗
∞

∑
i=0
O
(

ρ(A∗ + B∗K∗)i
)

= O
(

‖W‖∗
1− ρ(A∗ + B∗K∗)

)
.

We see that the difference between the minimal expected s-steps cost and sJ∗
is of order ‖W‖∗

1−ρ(A∗+B∗K∗)
and hence constant. Since we are usually interested

in the order of the regret i.e. O(
√

s) or O(log s) and not particularly in the
constants and the analysis of the regret is smoother in the case when we
compare incurred cost to sJ∗ we defined regret in this way.

2.2 System Level Synthesis

This section mainly follows and adapts the results which were discussed by
Dean et al. (2017) and Wang et al. (2019). They use the so called z-transform to
lift the analysis in the infinite dimensional Hilbert space, where the analysis
becomes linear, obtain the results and take the results back down to the
finite dimensional space. Let us first acquaint ourselves with the notation
necessary for this kind of analysis.

Definition 2.3 For a sequence of vectors (xk)
∞
k=0 and for z ∈ C define x(z) =

∑∞
k=0 z−kxk whenever the sum exist. Similarly for a sequence of matrices (Mk)

∞
k=0

and for z ∈ C define M(z) = ∑∞
k=0 z−k Mk whenever the sum exist.

We will call any such x(z), M(z) a transfer function. For a matrix-valued
transfer function we define the following norm:

‖M(z)‖H∞
= sup

z∈∂D

‖M(z)‖2 .

18

2.2. System Level Synthesis

We will be mostly interested in matrix transfer functions from the subset of
so called set of real-rational proper transfer matrices denoted by RH∞. Let us
now formally1 define this space.

Definition 2.4 Let M(z) be a matrix whose entries are functions in variable z. We
say that M(z) is real-rational proper transfer matrix if its entries are rational
functions in variable z with real coefficients and limz→∞ M(z) exist. Denote the
class of all real-rational proper transfer matrices with RPR. For a transfer matrix
M(z) define the set of poles (matrix has a pole at z0 if at least one of its entries has
a pole at z0) as P(M). Let us further define class RH∞ as:

RH∞ = {M(z)|M(z) ∈ PRR, P(M) ⊂ D}

We say that M(z) ∈ 1
zRH∞ if zM(z) ∈ RH∞. For a matrix M define the

resolvent of M as RM(z) = (zI −M)−1. Further we call the resolvent of the
system (A∗, B∗) with the controller K the resolvent of a matrix A∗ + B∗K.

2.2.1 LQR in the language of System Level Synthesis

Let us now motivate why should we consider transfer functions. Assume
that we choose to use a fixed controller K. We can express the state xi and
action ui as

xi =
i

∑
k=1

(A∗ + B∗K)i−kwk,

ui =
i

∑
k=1

K(A∗ + B∗K)i−kwk.

We observe that the connection between xi, ui and matrices A∗, B∗ and K is
not linear. Denoting Φx(k) = (A∗ + B∗K)k−1 and Φu(k) = K(A∗ + B∗K)k−1

we can rewrite that as(
xi
ui

)
=

i

∑
k=1

(
Φx(i− k + 1)
Φu(i− k + 1)

)
wk.

Hence xi, ui have a linear dependence on (Φx(k))k≥1, (Φu(k))k≥1 and since
dealing with linear systems is much easier we consider such notation/trans-
formation. From the definition it follows that we have:

Φx(k) = A∗Φx(k− 1) + B∗Φu(k− 1), ∀k ≥ 1, Φx(1) = I. (2.9)

Denoting Φx(z) = ∑∞
i=1 z−iΦx(i) and Φu(z) = ∑∞

i=1 z−iΦu(i) the constraints
given by eq. (2.9) can be equivalently written as:(

zI − A∗ −B∗
) (Φx(z)

Φu(z)

)
= I (2.10)

1The definition was taken from Stoorvogel (1992).

19

2. Preliminaries

With such a notation we also obtain u(z) = Kx(z) and K = Φu(z)Φx(z)−1.
Bearing this in mind we will turn now to non-static controllers, represent
the theory from Dean et al. (2017) and then use the derived theory to obtain
a robust static controller. For Φu, Φx ∈ 1

zRH∞ define a controller as K =
ΦuΦ−1

x and its corresponding response u = Kx. Let us now derive the so
called system response for such a controller. Multiply equation

xi+1 = A∗xi + B∗ui + wi+1

by z−i−1 and sum from 0 to ∞ in i to obtain:

x(z) =
1
z
(A∗x(z) + B∗u(z) + w(t)) ,

where we denoted w(z) = ∑k≥0 z−kwk+1. Inserting u = Kx and rearranging
the terms yields:

(zI − A∗ − B∗K) x = w.

Assuming that the inverse exist and using the relation u = Kx we arrive at
the system response equation:(

x
u

)
=

(
(zI − A∗ − B∗K)−1

K (zI − A∗ − B∗K)−1

)
w (2.11)

In the case of a static controller the notion of stability is clear – a controller K
stabilizes the system A∗, B∗ if ρ(A∗ + B∗K) < 1. Let us now define stability
also for the dynamic controllers.

Definition 2.5 (Stability of general controller) A controller K is stable if start-
ing from arbitrary x0, playing K and further assuming wi = 0 for every i results
in:

lim
k→∞

xk = 0.

Next theorem will connect the system response equation with the affine
conditions which we introduced in (2.10).

Theorem 2.6 (Theorem 3.1 in Dean et al. (2017)) We have:

1. The affine space defined by

(
zI − A∗ −B∗

) (Φx
Φu

)
= I, Φx, Φu ∈

1
z
RH∞ (2.12)

parametrizes all system responses (2.11) achievable by a stabilizing state-
feedback controller K.

20

2.2. System Level Synthesis

2. For any transfer matrices Φx and Φu satisfying (2.12) the controller K =
ΦuΦ−1

x is stabilizing and achieves system response (2.11).

Using the relation Φu = KΦx and equation (2.12) we have for any Φx, Φu ∈
1
zRH∞ : Φx = (zI − A∗ − B∗K)−1 and Φu = K (zI − A∗ − B∗K)−1. Hence
x = Φxw and u = Φuw.

The usual setting in the online learning of the stabilizing controller is that
we have estimates Â, B̂ and we know a neighborhood around the Â, B̂ where
the true underlying system A∗, B∗ lies with high probability. We wish to find
a controller which stabilizes everything inside this neighborhood. The next
lemma shows a condition for controller K, which stabilizes Â, B̂, to stabilize
also the system A, B, where A = Â + ∆A, B = B̂ + ∆B.

Lemma 2.7 (Sufficient condition, Lemma 3.4 in Dean et al. (2017)) Assume
controller K stabilize (Â, B̂) and let (Φx, Φu) be its corresponding system response.
Denoting ∆̂ = (∆A + ∆BK)RÂ+B̂K, a sufficient condition for K to stabilize (A, B)

is
∥∥∥∆̂
∥∥∥
H∞

< 1.

Remark 2.8 Expanding the resolvent one can see that (∆A + ∆BK)RÂ+B̂K =(
∆A ∆B

) (Φx
Φu

)
.

Next we will rewrite the sufficient condition
∥∥∥∆̂
∥∥∥
H∞

< 1 in an equivalent

form and show a sufficient condition when there indeed exist a controller
which stabilizes a every system with ‖∆A‖2 ≤ εA, ‖∆B‖2 ≤ εB.

We will limit ourselves to static controllers, which means that K = K. For
such condition the sufficient condition

∥∥∥∆̂
∥∥∥
H∞

< 1 is equivalent to:

∥∥∥∥(∆A ∆B)

(
I
K

)(
zI − Â− B̂K

)−1
∥∥∥∥
H∞

< 1. (2.13)

Next lemma shows that if εA, εB are small enough, then there exist a static
controller for which the constraint given by eq. (2.13) is satisfied. We state
the lemma with the notation presented in the described setting.

Lemma 2.9 (Fulfilled Sufficient condition, Lemma 4.2 in Dean et al. (2017))
Let K be a controller which stabilizes (A∗, B∗). Assume that εA, εB are small enough
that for ζ defined as ζ = (εA + εB ‖K‖2) ‖RA∗+B∗K‖H∞

we have ζ ≤ (1 +
√

2)−1.
Then K satisfies the constraint given by eq. (2.13).

The constraint given by eq. (2.13) is infinite dimensional one and hard to
compute is this from. However there exist a technique which translates the
constraint given by eq. (2.13) to a SDP program. The technique is called

21

2. Preliminaries

Kalman-Yakubovich-Popov (KYP) Lemma. To obtain constraint in the form
of semidefinite inequality we will use a version of discrete time KYP Lemma.
Let us first introduce a useful notation: for matrices X, Y, Z and W of appro-
priate dimensions define(

X Y
Z W

)
(z) = Z(zI − X)−1Y + W.

With the introduced notation we can state KYP lemma:

Lemma 2.10 (KYP Lemma, taken from Theorem 1.1 in Bart et al. (2018)) Let

M(z) =
(

X Y
Z W

)
(z) ∈ RH∞. Then the following are equivalent:

1. ‖M(z)‖H∞
< 1

2. ∃P � 0 such that(
P 0
0 I

)
−
(

X Y
Z W

)(
P 0
0 I

)(
X Y
Z W

)>
� 0

2.2.2 H∞ constraint to semi-definite constraint

In this section we will present the result of Dean et al. (2017), where they
transform the sufficient condition eq. (2.13) to a semi-definite constraint. As-
suming that the ‖∆A‖2 ≤ εA, ‖∆B‖2 ≤ εB they first showed that the con-
straint given by eq. (2.13) is satisfied if the following holds:∥∥∥∥(√2εA I√

2εBK

)
(zI − Â− B̂K)−1)

∥∥∥∥
H∞

≤ γ, γ ∈ [0, 1) (2.14)

Using KYP lemma and some matrix manipulations Dean et al. (2017) then
reformulates eq. (2.14) to the semi-definite constraint:

∃s ∈ [0, 1), P ∈ Rdx×dx with P � 0 and S ∈ Rdu×dx s.t.:
P− I ÂP + B̂S 0

(ÂP + B̂S)> P
(

εAP
εBS

)>
0

(
εAP
εBS

)
1
2 sI

 � 0.
(2.15)

From their derivation it follows that from any triple (s, P, S), which satisfies
constraints given by eq. (2.15), we can synthesize the controller K as K =
SP−1 and for controller K then holds:

1. ∀A, B with
∥∥∥A− Â

∥∥∥
2
≤ εA,

∥∥∥B− B̂
∥∥∥

2
≤ εB we have ρ(A + BK) < 1,

22

2.3. Tools from Probability and Linear Algebra

2. ∥∥∥∥(√2εA I√
2εBK

)
(zI − Â− B̂K)−1)

∥∥∥∥
H∞

≤
√

s (2.16)

Since the derivation of constraint given by eq. (2.15) is very similar to the
derivation presented in section 3.2.1 we omit it here.

2.3 Tools from Probability and Linear Algebra

2.3.1 Probabilistic bounds

Definition 2.11 (Sub-Gaussian random variables) A random variable X ∈ R

is said to to be sub-Gaussian with variance proxy σ2 if we have:

EX = 0 and ∀s ∈ R : EesX ≤ e
s2σ2

2 .

We write X ∼ subG(σ2). For a random vector X ∈ Rn we say that is sub-
Gaussian with variance proxy σ2 and write X ∼ subGn(σ2) if EX = 0 and for
every u ∈ Sn−1 we have u>X ∼ subG(σ2). For a random matrix X ∈ Rn×m we
say that is sub-Gaussian with variance proxy σ2 and write X ∼ subGn×m(σ2) if
EX = 0 and for every u ∈ Sn−1 and v ∈ Sm−1 we have u>Xv ∼ subG(σ2).

Remark 2.12 Since for X ∼ N (0, σ2) holds EesX = e
s2σ2

2 we have X ∼ subG(σ2).

Definition 2.13 (Degenerate random variable) We say that a random variable
X ∈ Rn is degenerate if its support lies in the space with strictly lower dimension.
If the support of X has dimension n then X is non-degenerate. If X is Gaussian,
X is degenerate if and only if its covariance matrix is not invertible.

Theorem 2.14 (Hanson-Wright (Proposition 1.1 in Hsu et al. (2012))) Let x ∼
N (0, In) and let A ∈ Rm×n. Denote by Σ = A>A. Then for all z > 0 we have:

P

(
‖Ax‖2

2 > Tr(Σ) + 2
√

Tr(Σ2)z + 2 ‖Σ‖2 z
)
≤ e−z

Corollary 2.15 Let x ∼ N (0, Σ). Then for any δ ∈ (0, 1
e) we have with probabil-

ity at least 1− δ:

‖x‖2
2 ≤ 5 Tr(Σ) log

1
δ

Proof Since δ ∈ (0, 1
e) we have log 1

δ > 1. Hence if we set z = log 1
δ we have√

z ≤ z. Inserting z = log 1
δ to theorem 2.14 we have w.p at least 1− δ:

‖x‖2
2 ≤ Tr(Σ) + (2 ‖Σ‖F + 2 ‖Σ‖2) log

1
δ

.

23

2. Preliminaries

Hence it is enough to show that ‖Σ‖2 , ‖Σ‖F ≤ Tr(Σ). Since Σ is symmetric
positive semi-definite matrix its eigenvalues are equal to singular values.
Hence it is enough to show:√

∑
i

λi(Σ)2 ≤∑
i

λi(Σ).

Since (
∑

i
λi(Σ)

)2

−∑
i

λi(Σ)2 = ∑
i 6=j

λi(Σ)λj(Σ) ≥ 0,

we have ‖Σ‖F ≤ Tr(Σ). For every matrix it also holds ‖Σ‖2 ≤ ‖Σ‖F, hence
we showed that ‖Σ‖2 , ‖Σ‖F ≤ Tr(Σ). �

It often happens that we would like to show that some property holds with
high probability for every point on some manifold in Rn. However we have
only a bound for a single point. We can usually extend this property to
finite number of points by use of union bound. But how to extend it to
uncountable sets? We can make use of the so called ε-nets2 as we will see in
the proof of proposition 2.18.

Definition 2.16 (ε-net, covering number) Let (X, d) be a metric space and let
ε > 0. A subsetNε is called an ε-net if ∀x ∈ X ∃y ∈ Nε such that d(x, y) ≤ ε. The
minimal cardinality (finite) of an ε-net is denoted by N (X, ε) and is called covering
number.

Lemma 2.17 (Covering number of Unit ball) For Rn equipped with euclidean
metric we have: N (Sn−1, ε) ≤

(
1 + 2

ε

)n.

Proof Let Nε be maximal ε-set for which we have ∀x, y ∈ Nε : ‖x− y‖2 ≥ ε.
Since Nε is maximal for any other point z ∈ Sn−1 we have that there exist
x ∈ Nε such that ‖x− z‖2 ≤ ε. The balls with radius ε

2 around the points in
Nε are disjoint and inside the ball centered at zero with radius 1 + ε

2 . Hence
we have: vol

(
ε
2 B
)
|Nε| ≤ vol

(
(1 + ε

2)B
)
, where B is the unit ball. Since

vol(aB) = anvol(B) we obtain:
(

ε
2

)n |Nε| ≤
(
1 + ε

2

)n. Rearranging the terms
yields the bound: |Nε| ≤

(
1 + 2

ε

)n. �

Using ε-net argument the next proposition was proven. Proposition 2.18 we
will use later in order to prove an estimation error upper bound.

Proposition 2.18 (Proposition 8.1 in Sarkar and Rakhlin (2018)) Let M ∈ Rn×d

be a random matrix. Then for any ε ∈ (0, 1) there exist w ∈ Sd−1 such that we
have:

P (‖M‖2 > z) ≤
(

1 +
2
ε

)d

P (‖Mw‖2 > (1− ε)z) .

2For a more in depth discussion about ε-nets see section 4.2 in Vershynin (2018).

24

2.3. Tools from Probability and Linear Algebra

Proof Let Nε be minimal (by cardinality) ε-net of Sd−1. We will first prove
that it holds ‖M‖2 ≤ 1

1−ε maxw∈Nε ‖Mw‖2. Let x ∈ Sd−1 such that ‖M‖2 =
‖Mx‖2 and y ∈ Nε such that ‖x− y‖2 ≤ ε. Since ‖M‖2 = ‖Mx‖2 ≤
‖M(x− y)‖2 + ‖My‖2 ≤ ‖M‖2 ε + ‖My‖2, we have: ‖M‖2 ≤ 1

1−ε ‖My‖2 .
Therefore we have: ‖M‖2 ≤ 1

1−ε maxw∈Nε ‖Mw‖2. With this in hand we can
bound:

P (‖M‖2 > z) ≤ P

(
max
w∈Nε

‖Mw‖2 > (1− ε)z
)

.

Using union bound we obtain:

P (‖M‖2 > z) ≤ ∑
w∈Nε

P (‖Mw‖2 > (1− ε)z)

≤ |Nε|P (‖Mwm‖2 > (1− ε)z) ,

where wm is such that the probability is maximal among w ∈ Nε. Since by
lemma 2.17 |Nε| ≤

(
1 + 2

ε

)d we proved the proposition. �

2.3.2 Results from Linear Algebra

When we will derive the semi-definite constraint in section 3.2.1 we will
extensively use Schur’s complement lemma. Here we will state the lemma
and the results which are closely related to it and will also help us with
derivation.

Lemma 2.19 (Schur complement lemma) Let X be symmetric matrix given by

X =

(
M N

N> O

)
. The following holds:

1. If M � 0, then X � 0⇔ O− N>M−1N � 0.

2. If O � 0, then X � 0⇔ M− NO−1N> � 0.

Definition 2.20 (Matrix inertia) Associate with every symmetric matrix M ∈
Rd×d a triple (µ, z, p), where µ is the number of positive eigenvalues, z the number
of zero eigenvalues and p the number of negative eigenvalues (µ + z + p = d). We
call the triple (µ, z, p) the inertia of matrix M.

Definition 2.21 (Conjugation) For a nonsingular matrix X we say that matrices
X>MX and M are congruent. By saying that we conjugate a matrix M with a
matrix X we mean that we perform the mapping: M→ X>MX.

Theorem 2.22 (Sylvester) Congruent symmetric matrices have the same inertia.

When we will derive the region around RLS estimates where A∗, B∗ lies
with high probability we will extensively use kronecker product ⊗ and vec-
torization vec(·). We state the following lemma for smoother reading of that
analysis.

25

2. Preliminaries

Lemma 2.23 Let matrices M, N, O, P be of appropriate dimensions and invertible
when we would like to take the inverse. The followig holds:

1. (M⊗ N)(O⊗ P) = MO⊗ NP,

2. vec(MN) = (N> ⊗ I) vec(M) ,

3. (M⊗ N)> = M> ⊗ N>,

4. (M⊗ N)−1 = M−1 ⊗ N−1,

5. Tr(M>NM) = vec(M>)>(N ⊗ I) vec(M>),

6. M⊗ (N + O) = M⊗ N + M⊗O and (M + N)⊗O = MO⊗ NO.

Another tool which will come handy is the so called S-lemma. We present
the result which was obtained by Luo et al. (2004).

Theorem 2.24 (Proposition 3.4 of Luo et al. (2004)) Let M, N, O, P be matri-
ces of appropriate dimensions where M, O are symmetric and P is positive semi-
definite. The following are equivalent:

1. ∀X with X>PX � I we have:

O + X>N + N>X + X>MX � 0

2. ∃t ≥ 0 s.t.: (
O− tI N>

N M + tP

)
� 0

Theorem 2.25 (Proposition 3.6 of Luo et al. (2004)) Let M, N, O, P, S, T, U be
matrices of appropriate dimensions where M, O, U are symmetric and P is positive
semi-definite. The following are equivalent:

1. ∀X with X>PX � I we have:(
U S + TX

(S + TX)> O + X>N + N>X + X>MX

)
� 0

2. ∃t ≥ 0 s.t.: U S T
S> O− tI N>

T> N M + tP

 � 0.

It is a well known fact that for a matrix A with ρ(A) < 1 there exist constants
M, γ with γ < 1 such that for every k ≥ 0 we have

∥∥Ak
∥∥

2 ≤ Mγk. To
quantify M and γ we will use the following results.

26

2.4. Linear system identification

Theorem 2.26 (Theorem 2.16 from Dowler (2013)) Let M ∈ Rd×d be a square
matrix and let Γ be a positively oriented Jordan curve in the complex plane which
contains the ball B(ρ(M)) in its interior. Then we have:

Mk =
1

2πi

∫
Γ

zkRM(z)dz.

Theorem 2.27 (Theorem 2.3 in Gil’ (2014)) Let M ∈ Rd×d and z 6∈ σ(M). De-
note ρ(M, z) = mind

k=1 |λk(M)− z|, then we have:

‖RM(z)‖2 ≤
1

ρ(M, z)

(
1 +

1
d− 1

(
1 +
‖M‖2

F −
∣∣Tr(M2)

∣∣
ρ(M, z)2

)) d−1
2

.

Corollary 2.28 Let M ∈ Rd×d and ρ(M) < 1, then we have:

‖RM‖H∞
≤ 1

1− ρ(M)

(
1 +

1
d− 1

(
1 +
‖M‖2

F −
∣∣Tr(M2)

∣∣
(1− ρ(M))2

)) d−1
2

.

In the following we define the notion of regular matrix.

Definition 2.29 (Regular matrix) Matrix M ∈ Rn×n is regular if for every eigen-
value µ of M with |µ| > 1 we have rank(M− µI) = n− 1.

Example 2.30 Let M1, M2 be matrices defined as:

M1 =

1.1 1 0
0 1.1 0
0 0 0.8

 , M2 =

1.1 0 0
0 1.1 2.1
0 0 0.8

 .

Then matrix M1 is regular, whereas matrix M2 is not.

2.4 Linear system identification

In this section we will present results of Sarkar and Rakhlin (2018) which
deals with the linear system identification. To estimate matrices A∗, B∗ after
running the system for s steps we will use regularized least squares estima-
tor defined as

As, Bs = argmin
A,B

s−1

∑
i=0

∥∥∥∥xi+1 − (A B)
(

xi
ui

)∥∥∥∥2

2
+ λ ‖(A B)‖2

F . (2.17)

In the following we will show, based on the results of Sarkar and Rakhlin

(2018), that when the matrix A∗ is regular and if we choose (ui)i≤s
i.i.d.∼

N (0, σ2
u I), the RLS estimates are consistent and the convergence towards

the true parameters scales as O
(

1√
s

)
.

27

2. Preliminaries

Corollary 2.31 (based on Theorem 2 of Sarkar and Rakhlin (2018)) Suppose

the system evolves via (1.1) and the chosen actions (ui)i≥0
i.i.d.∼ subGk(σ

2
u) come from

non-degenerate distribution and are independent of (wi)i≥1. Further assume that
matrix A∗ is regular. Then, with probability at least 1− δ for the RLS estimators
defined by eq. (2.17) we have:

max (‖As − A∗‖2 , ‖Bs − B∗‖2) ≤
poly(log s, log 1

δ)√
s

,

whenever s ≥ poly(log 1
δ).

Proof Denoting zi = (x>i u>i)
> we obtain that from the definition of RLS

estimators it follows that As, Bs minimize the expression∥∥(x1 . . . xs
)
− (A B)

(
z0 . . . zs−1

)∥∥2
F + λ ‖(A B)‖2

F (2.18)

in variables A, B. Deriving eq. (2.18) with respect to (A B) and setting the
derivative to zero we obtain:

(As Bs)
> =

(
s−1

∑
i=0

ziz>i + λI

)−1(s−1

∑
i=0

zix>i+1

)
.

Using the relation xi+1 = (A∗ B∗)zi + wi+1 we obtain:

(As Bs)
> =

(
s−1

∑
i=0

ziz>i + λI

)−1(s−1

∑
i=0

ziz>i (A∗ B∗)> + ziw>i+1

)

=

(
s−1

∑
i=0

ziz>i + λI

)−1(s−1

∑
i=0

(
ziz>i + λI

)
(A∗ B∗)> − λ(A∗ B∗)> + ziw>i+1

)
= (A∗ B∗)> + (Vs + λI)−1 Ss − λ (Vs + λI)−1 (A∗ B∗)>.

Next rewrite eq. (1.1) as:(
xi+1
ui+1

)
=

(
A∗ B∗
0 0

)(
xi
ui

)
+

(
wi+1
ui+1

)
. (2.19)

Since vi+1 :=
(

wi+1
ui+1

)
are subGd+k(σ

2
∗), where σ∗ = max(σw, σu), and since

by further denoting A =

(
A∗ B∗
0 0

)
the eq. (2.19) can be rewritten as zi+1 =

Azi + vi+1, we are in the setting analyzed by Sarkar and Rakhlin (2018). Since

matrix A∗ is regular, also matrix
(

A∗ B∗
0 0

)
is regular since the eigenvalues

of matrix A are {eigenvalues of matrix A∗} ∪ {k zero eigenvalues}. Further

28

2.5. Optimal infinite horizon policy via SDP

denote by S′s = ∑s−1
i=0 ziv>i+i. From the proof of Theorem 2 presented by

Sarkar and Rakhlin (2018) follows that
∥∥V−1/2

s S′s
∥∥

2 ≤ poly(log s, log 1
δ) and

Vs � Ω(s)I (the latter can be observed from eq. (116) in (Sarkar and Rakhlin,
2018)). Since

∥∥(Vs + λI)−1/2S′s
∥∥

2 ≤
∥∥V−1/2

s S′s
∥∥

2 and Vs + λI � Vs � Ω(s)I
we obtain:

‖(As Bs)− (A∗ B∗)‖2 =

∥∥∥∥(Id 0
) ((As Bs

∗ ∗

)
−
(

A∗ B∗
0 0

))∥∥∥∥
2

≤
∥∥∥∥(As Bs
∗ ∗

)
−
(

A∗ B∗
0 0

)∥∥∥∥
2

≤
∥∥∥(Vs + λI)−1/2

∥∥∥
2

∥∥∥(Vs + λI)−1/2S′s
∥∥∥

2

+ λ
∥∥∥(Vs + λI)−1

∥∥∥
2

∥∥∥∥(A∗ B∗
0 0

)∥∥∥∥
2

≤
poly(log s, log 1

δ)√
s

+O
(

1√
s

)
=

poly(log s, log 1
δ)√

s
.

We finish the proof with the observation max (‖As − A∗‖2 , ‖Bs − B∗‖2) ≤
‖(As Bs)− (A∗ B∗)‖2. �

2.5 Optimal infinite horizon policy via SDP

In section 2.1.2 we showed that the optimal infinite horizon policy is to
choose actions ui = K∗xi, where

K∗ = −(R + B>∗ P∗B∗)−1B>∗ P∗A∗,

P∗ = A>∗ P∗A∗ − A>∗ P∗B∗(R + B>∗ P∗B∗)−1B>∗ P∗A∗.

In this section we will motivate and show a different approach how we can
find K∗ based on a SDP presented by Cohen et al. (2018). Assume that we
play ui = Kxi where K stabilizes the underlying system and that the states
converge in distribution towards x. Denote by Σxx its limiting covariance
matrix. The J(π) of this policy will be equal to:

J(π) = E
[

x>Qx + x>K>RKx
]

= Tr
(
(Q + K>RK)Σxx

)
=

〈(
Q 0
0 R

)
,
(

Σxx ΣxxK>

KΣxx KΣxxK>

)〉
.

At the same time as system follows eq. (1.1) we have:

Σxx = (A∗ + B∗K)Σxx(A∗ + B∗K)> + σ2
w I

= (A∗ B∗)
(

Σxx ΣxxK>

KΣxx KΣxxK>

)
(A∗ B∗)> + σ2

w I.

29

2. Preliminaries

With this in mind Cohen et al. (2018) showed that the optimal infinite hori-
zon controller K∗ can be obtained by first solving the SDP:

min
Σ�0

〈(
Q 0
0 R

)
, Σ
〉

s.t. Σxx = (A∗ B∗)Σ(A∗ B∗)> + σ2
w I,

(2.20)

where Σ ∈ R(dx+du)×(dx+du) has a block structure Σ =

(
Σxx Σxu
Σux Σuu

)
. The

optimal controller is then obtained as:

K∗ = ΣuxΣ−1
xx .

30

Chapter 3

Find stabilizing controller

In this section we will show an algorithm which we can use to find a con-
troller which stabilizes the system A∗, B∗. Let us first give a pseudo-code for
the algorithm, which parts we will then disentangle and describe in depth
in this chapter.

Algorithm 1 eXploration

1: Input: x0 = 0, other parameters depending on initialization
2: for s = 1, . . . do
3: Play action us−1 and observe state xs
4: Let (As, Bs) be a RLS estimators
5: Compute high probability region Θ around (As, Bs)
6: Try to synthesize controller K0 which stabilizes every system in Θ
7: if we find K0 return K0
8: end for

When the algorithm terminates it will return a controller which, with high
probability, stabilizes the underlying system A∗, B∗. We can use this algo-
rithm to initialize algorithms, such as OSLO (Cohen et al., 2019) or CEC
(Simchowitz and Foster, 2020), which need a stabilizing controller as an
input. We will show that using specific initialization the algorithm 1 termi-
nates with high probability in constant time. Since we finish in constant time
the regret we suffer is also constant (could be exponential in system param-
eters) in time horizon T. Hence if we initialize an algorithm, which needs
a stabilizing controller as an input, with algorithm 1 the new algorithm has
the same order of regret should we be given a stabilizing controller. In the
next sections we will describe possible ways how to execute lines 3, 5 and 6
of algorithm 1.

31

3. Find stabilizing controller

3.1 Data driven estimation error

In this section we will show how to obtain regions around RLS estimates
As, Bs where A∗, B∗ lies with high probability. The regions will be either of
the form

{(A, B)| ‖A− As‖2 ≤ εA, ‖B− Bs‖2 ≤ εB} , (3.1)

where εA, εB are data dependent error upper bounds, or of the form{
(A, B)|X>DX � I, X> = (A B)− (As Bs)

}
, (3.2)

where D is a positive definite matrix which depends on the observed past
states and played actions. The region given by eq. (3.1) consists of two
balls, one around As with radius εA and the other around Bs with radius εB,
whereas the region given by eq. (3.2) is an ellipsoid around (As Bs). We will
present how we can obtain the high probability regions in two different, in
particular Bayesian and non-Bayesian, settings.

3.1.1 Bayesian view

In this section we will describe how we can obtain εA, εB or D, introduced
in the discussion given in section 3.1, from the Bayesian perspective. We as-
sume that a priori our belief about ϑ∗ = vec((A∗ B∗)) is given as vec((A B)) ∼
N (0, σ2

w
λ I). Running the system for s steps we observe (xi)1≤i≤s and we

play actions (ui)0≤i≤s−1. We denote by D = {(xi)1≤i≤s, (ui)0≤i≤s−1} the data
which is produced by running the system. Here we compute the posterior
belief of vec((A∗ B∗)) namely p(ϑ|D) and derive consistent data dependent
error upper bounds for matrices A∗, B∗ and their RLS estimates. First we
show lemma which converts the eq. (1.1) to a form which we will use in the
derivation of a posterior belief.

Lemma 3.1 Denoting Φi = (x>i u>i)⊗ Idx we can rewrite eq. (1.1) as:

xi+1 = Φiϑ∗ + wi+1 (3.3)

Proof Compute:

xi+1 = (A∗ B∗)
(

xi
ui

)
+ wi+1

= vec
(
(A∗ B∗)

(
xi
ui

))
+ wi+1

=
(
(x>i u>i)⊗ Idx

)
vec((A∗ B∗)) + wi+1

= Φiϑ∗ + wi+1 �

32

3.1. Data driven estimation error

Computation of the exact posterior To compute the posterior distribution
we first observe:

p(ϑ|D) ∝ p(D|ϑ)p(ϑ).

We first compute p(D|ϑ). By product rule we have:

p(D|ϑ) ∝
s

∏
i=1

p(xi|xi−1, ui−1, ϑ).

Since p(xi|xi−1, ui−1, ϑ) is the density of N (Φi−1ϑ, σ2
w I) we further have:

p(D|ϑ) ∝
s

∏
i=1

e
− 1

2σ2
w
(xi−Φi−1ϑ)>(xi−Φi−1ϑ)

= exp

(
− 1

2σ2
w

s

∑
i=1
‖xi −Φi−1ϑ‖2

)

∝ exp

(
−ϑ>

(
1

2σ2
w

s

∑
i=1

Φ>i−1Φi−1

)
ϑ +

(
1

σ2
w

s

∑
i=1

x>i Φi−1

)
ϑ

)
.

Together with prior

p(ϑ) ∝ exp
(
−ϑ>

(
λ

2σ2
w

I
)

ϑ

)
we obtain:

p(ϑ|D) ∝ exp

(
−ϑ>

(
1

2σ2
w

s

∑
i=1

Φ>i−1Φi−1 +
λ

2σ2
w

I

)
ϑ +

(
1

σ2
w

s

∑
i=1

x>i Φi−1

)
ϑ

)
.

Matching the coefficients we obtain that ϑ|D ∼ N (µ, Σ), where:

Σ−1 =
1

σ2
w

s

∑
i=1

Φ>i−1Φi−1 +
λ

σ2
w

I

µ =

(
1

σ2
w

s

∑
i=1

Φ>i−1Φi−1 +
λ

σ2
w

I

)−1(
1

σ2
w

s

∑
i=1

Φ>i−1xi

)

=

(
s

∑
i=1

Φ>i−1Φi−1 + λI

)−1(s

∑
i=1

Φ>i−1xi

)

For the estimators Â, B̂ we than take MAP, for which we have vec((Â B̂)) =
µ. We will now derive explicit value of (Â B̂). We denote by zi = (x>i u>i)

>

33

3. Find stabilizing controller

and compute:

vec((Â B̂)) =

(
s

∑
i=1

Φ>i−1Φi−1 + λI

)−1(s

∑
i=1

Φ>i−1xi

)

=

(
s

∑
i=1

(zi−1 ⊗ Idx)(z
>
i−1 ⊗ Idx) + λI

)−1(s

∑
i=1

(zi−1 ⊗ Idx)xi

)

=

((
s

∑
i=1

zi−1z>i−1 + λIdx+du

)
⊗ Idx

)−1

vec

(
s

∑
i=1

xiz>i−1

)

=

(s

∑
i=1

zi−1z>i−1 + λIdx+du

)−1

⊗ Idx

 vec

(
s

∑
i=1

xiz>i−1

)

= vec

(s

∑
i=1

xiz>i−1

)(
s

∑
i=1

zi−1z>i−1 + λIdx+du

)−1
 .

Hence we obtained that MAP estimator satisfy:

(Â B̂) =

(
s

∑
i=1

xiz>i−1

)(
s

∑
i=1

zi−1z>i−1 + λIdx+du

)−1

which is the same if we would compute the RLS estimator with regularizing
parameter λ.

High probability regions In this section we will first derive D and its corre-
sponding ellipsoid region where A∗, B∗ lies with high probability. Then we
will derive error bounds εA, εB such that

∥∥∥A∗ − Â
∥∥∥

2
≤ εA and

∥∥∥B∗ − B̂
∥∥∥

2
≤

εB w.p. at least 1− δ. Using the exact posterior distribution computed in
section 3.1.1 we obtain that (A∗, B∗) ∈ Θ w.p. at least 1− δ, where

Θ = {(A, B)|θ = vec((A B)), (θ − µ)>Σ−1(θ − µ) ≤ cδ}.

Here cδ is chosen in such a way that for Z ∼ χ2
d2

x+dxdu
we have: P(Z ≥ cδ) = δ.

For matrices A, B denote by X> = (A B)− (Â B̂). For (A, B) ∈ Θ we have:

1 ≥ vec(X>)>
(

1
σ2

wcδ

s

∑
i=1

Φ>i−1Φi−1 +
λ

cδσ2
w

I

)
vec(X>)

= vec(X>)>
((

1
σ2

wcδ

s

∑
i=1

zi−1z>i−1 +
λ

cδσ2
w

Idx+du

)
⊗ Idx

)
vec(X>)

= Tr(X>DsX) ≥ λmax(X>DsX).

34

3.1. Data driven estimation error

where Ds = 1
cδσ2

w

(
∑s

i=1 zi−1z>i−1 + λIdx+du

)
. Hence with probability at least

1 − δ matrix (A∗, B∗) lies in the set {(A, B)|X>DsX � I, X> = (A B) −
(Â B̂)}. To compute εA and εB we solve two maximization problems

max t

s.t.
(

tIdx 0
0 0

)
� Ds

(3.4)

and
max t

s.t.
(

0 0
0 tIdu

)
� Ds

(3.5)

and set εA = 1√
tA

, εB = 1√
tB

, where tA, tB are optimal values of the problems

given by eq. (3.4), eq. (3.5) respectively. If for X> = (A∗ B∗)− (Â B̂) we have
X>DsX � I, than also:

X>
(

1
ε2

A
Idx 0

0 0

)
X � I

Since

X>
(

1
ε2

A
Idx 0

0 0

)
X =

1
ε2

A
(A∗ − Â)(A∗ − Â)> � I,

we have that
∥∥∥A∗ − Â

∥∥∥
2
≤ εA. In a similar way we obtain

∥∥∥B∗ − B̂
∥∥∥

2
≤ εB.

Hence w.p. at least 1− δ we have
∥∥∥A∗ − Â

∥∥∥
2
≤ εA and

∥∥∥B∗ − B̂
∥∥∥

2
≤ εB.

Explicit formulas for εA and εB In section 3.1.1 we showed how we can find
εA, εB. In this section we will derive the explicit formulas for εA, εB, which
we than use in the computation. From the definition it follows that εA is the
smallest scalar which satisfies:(

1
ε2

A
Idx 0

0 0

)
� Ds. (3.6)

Since Ds is symmetric positive definite matrix it has a spectral value decom-
position Ds = U>SU, where U is orthogonal matrix, and S = diag(σ1, . . . , σdx+du),
with σ1 ≥ · · · ≥ σdx+du > 0. Denoting U = (U1 U2), where U1 ∈ R(dx+du)×dx

and U2 ∈ R(dx+du)×du , and conjugating eq. (3.6) with U we obtain that
eq. (3.6) is equivalent to:

1
ε2

A
U1U>1 � S. (3.7)

35

3. Find stabilizing controller

Further denoting P = S−1/2, conjugating eq. (3.7) with P and multiplying
eq. (3.7) with ε2

A on both sides, eq. (3.7) is equivalent to:

PU1U>1 P> � ε2
A I

Since εA is the smallest such scalar we have: ε2
A =

∥∥PU1U>1 P>
∥∥

2, from where
we finally obtain the explicit formula for εA:

εA = ‖PU1‖2 .

With similar derivation we obtain also the explicit formula for εB:

εB = ‖PU2‖2 .

To conclude section 3.1.1 we will show that if we choose actions ui
i.i.d.∼ N (0, σ2

u I)
the estimation regions are consistent i.e. we will show that in this case the
error upper bounds εA, εB which we derived converge towards 0. For that
we first look at the tail of χ2 distribution.

χ2 tail Let Z ∼ χ2
n, where n are the degrees of freedom. The result of

Laurent and Massart (2000) states that we have:

P(Z ≥ n + 2
√

nz + 2z) ≤ e−z (3.8)

Since 5z ≥ n + 2
√

nz + 2z for z ≥ n, we have for z ≥ n:

Pr(Z ≥ z) ≤ e−
z
5 . (3.9)

In the next section we will use cδi with property:

Pr(Z ≥ cδi) =
δ

2i2 ,

where we will send i towards infinity. Here we search for an upper bound
for cδi . Using eq. (3.9) we obtain that for cδi ≥ n we have:

δ

2i2 = Pr(Z ≥ cδi) ≤ e−
cδi
5 ,

from where we obtain:

cδi ≤ 5 log
2i2

δ
.

Hence for every i we have:

cδi ≤ n ∨ 5 log
2i2

δ
= O(log i)

36

3.1. Data driven estimation error

Error bounds consistency First since we would like to have an algorithm
which probability of failure is bounded above by δ, we define δi as

δi =
δ

2i2 .

We understand δi as a probability of failure at step i. By union bound the
total probability of failure is then bounded by:

∑
i≥1

δ

2i2 = δ
π2

12
≤ δ

Hence at step i we will use the constant cδi to create matrix Di. By the
properties of the tail of χ2 distribution derived in section 3.1.1 we have that
1

cδi
≥ Ω(1

log(i)).

Sarkar and Rakhlin (2018) showed that for every regular system A∗, B∗ the

empirical covariance matrix Vs = ∑s
i=1 zi−1z>i−1 � Ω(s)I if we play ui

i.i.d.∼
N (0, σ2

u I).

Combining those two results together we obtain that Ds scales as Ds �
Ω(s

log(s))I. Since we obtained εA, εB by maximization, we have:

1
ε2

A
,

1
ε2

B
≥ Ω

(
s

log s

)
,

which is equivalent to:

εA, εB ≤ O
(√

log s
s

)
.

As O
(√

log s
s

)
s→∞→ 0, we derived the consistency of the estimation error

upper bounds.

3.1.2 Self Normalizing Processes

In section 3.1.1 we assumed a priori a belief about the true system A∗, B∗
and build confidence regions based on this. In this section we will instead
assume that we know an upper bound ϑ with ‖(A∗ B∗)‖2 ≤ ϑ and use
the theory of multivariate Self Normalizing Processes studied by Peña et al.
(2008).

For the RLS estimator we derived that:

((As Bs)− (A∗ B∗))
> = (Vs + λI)−1 Ss − λ (Vs + λI)−1 (A∗ B∗)>, (3.10)

37

3. Find stabilizing controller

where Vs = ∑s−1
i=0 ziz>i and Ss = ∑s−1

i=0 ziw>i+1, with zi = (x>i u>i)
>. Since

we know an upper bound ϑ for ‖(A∗ B∗)‖2 ≤ ϑ and we observe Vs, the
only term that we still have to deal with, in order to upper bound the es-
timation error, is Ss. In the following, we will show an upper bound for∥∥∥(Vs + λI)−

1
2 Ss

∥∥∥
2
. The result builds on ideas from Abbasi-Yadkori et al.

(2011) and Sarkar and Rakhlin (2018). Since we will use the result of Self
Normalzing process also in section 5.2, we take here a bit more general ap-
proach.

Let F = (Fi)i≥0 be a filtration, (xi)i≥0 stochastic process in Rd adopted to F
and (wi)i≥1 zero mean, conditionally subGl(σ

2), meaning that we have for
every ‖u‖2 = 1 , γ ≥ 0 and i ≥ 1:

E
[
eγ(u>wi)|Fi−1

]
≤ e

γ2σ2
2 .

Further denote Vs = ∑s−1
i=0 xix>i and Ss = ∑s−1

i=0 xiw>i+1.

Lemma 3.2 Let us be in the aforementioned setting, then we have w.p. at least
1− δ:

∀s ≥ 0 : ‖Ss‖2
(Vs+λI)−1 ≤

2σ2

(1− ε)2 log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)l

δ

)

Proof For ε ∈ (0, 1) we obtain from Proposition 2.18:

P
(
‖Ss‖(Vs+λI)−1 > y

)
≤
(

1 +
2
ε

)l

P
(
‖Ssu‖(Vs+λI)−1 > (1− ε)y

)
=

(
1 +

2
ε

)l

P
(
‖Ssu‖2

(Vs+λI)−1 > (1− ε)2y2
)

,

where u ∈ Rl is an appropriate unit vector. Since Ssu = ∑s
i=1 zi−1(w>i u)

and wi are independent subGl(σ
2) random variables, w>s u are independent

subG(σ2) random variables. Hence we can apply Theorem 3 of Abbasi-
Yadkori et al. (2011). Setting

y2 =
2σ2

(1− ε)2 log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)l

δ

)
we obtain that with probability at least 1− δ we have for every s ≥ 0:

‖Ss‖2
(Vs+λI)−1 ≤

2σ2

(1− ε)2 log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)l

δ

)
. �

Using the lemma 3.2 the bound on
∥∥∥(Vs + λI)−

1
2 Ss

∥∥∥
2

follows.

38

3.1. Data driven estimation error

Proposition 3.3 In the aforementioned setting let ε ∈ (0, 1) arbitrary. Then we
have w.p. at least 1− δ:

∀s ≥ 0 :
∥∥∥(Vs + λI)−

1
2 Ss

∥∥∥2

2
≤ 2σ2

(1− ε)2 log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)d

δ

)

Proof Denote by Fi = σ((uj)j≤i, (wj)j≤i). Apply Lemma 3.2 with Ss = Ss
and Vs = Vs and the result follows. �

Collecting the results together, we arrive at the data dependent εA, εB which
we can use in algorithm 1.

Corollary 3.4 For the RLS estimates we have w.p. at least 1− δ for every s ≥ 0:

‖As − A∗‖2 ≤
σw

1− ε

√√√√2 log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)d

δ

)∥∥∥(Id 0)(Vs + λI)−1/2
∥∥∥

2

+ λ
∥∥∥(Id 0)(Vs + λI)−1

∥∥∥
2

ϑ

‖Bs − B∗‖2 ≤
σw

1− ε

√√√√2 log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)d

δ

)∥∥∥(0 Ik)(Vs + λI)−1/2
∥∥∥

2

+ λ
∥∥∥(0 Ik)(Vs + λI)−1

∥∥∥
2

ϑ

Proof Since the analysis for the matrix As is very much the same as for the
matrix Bs we will do it just for As. First observe that we have:

(As − A)> = (Id 0) (Vk + λI)−1 Sk − λ(Id 0) (Vk + λI)−1 (A B)>.

Next using triangle inequality we obtain:

‖As − A‖2 ≤ I1 + I2,

where I1 =
∥∥∥(Id 0) (Vk + λI)−1 Sk

∥∥∥
2

and I2 =
∥∥∥λ(Id 0) (Vk + λI)−1 (A B)

∥∥∥
2

.
The first term is by Lemma 3.2 bounded w.p. at least 1− δ:

I1 ≤
∥∥∥(Id 0) (Vk + λI)−

1
2

∥∥∥
2

∥∥∥(Vk + λI)−
1
2 Sk

∥∥∥
2

≤
∥∥∥(Id 0) (Vk + λI)−

1
2

∥∥∥
2

σw

1− ε

√√√√2 log

(
det(Vt + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)d

δ

)
.

With the bound on I2 term:

I2 =
∥∥∥λ(Id 0) (Vk + λI)−1 (A B)

∥∥∥
2
≤ λ

∥∥∥(Id 0) (Vk + λI)−1
∥∥∥

2
ϑ,

we conclude the proof. �

39

3. Find stabilizing controller

Since the upper bound in Corollary 3.4 holds for every ε ∈ (0, 1), we op-
timize over ε to obtain the best possible bound while running algorithm 1.
We showed in section 3.1.1 that data dependent upper bounds which we
derived in Bayesian setting are consistent. Experiments in section 6.1 show
that errors which we obtain from the theory of multivariate Self Normalizing
Processes perform comparable to the errors from Bayesian setting, however
we do not have a guarantee that they are consistent.

3.2 Robust control synthesis

In section 3.1 we demonstrated how we can obtain region Θ around RLS
estimates As, Bs such that (A∗, B∗) ∈ Θ with probability at least 1− δ. In
this section we will show different approaches how we can search for con-
troller K which stabilizes every system in region Θ. If the region Θ is large
the controller with such properties usually does not exist. However as the
estimation becomes more accurate region Θ shrinks. We will further give a
sufficient condition on the size of Θ when we have a guarantee that we can
synthesize a controller which stabilizes every system inside Θ.

3.2.1 Robust controller from SLS

We will start with the results which we presented in section 2.2.2. Dean et al.
(2017) showed that from any feasible solution of eq. (2.15) we obtain a con-
troller which stabilizes all systems A, B with

∥∥∥A− Â
∥∥∥

2
≤ εA,

∥∥∥B− B̂
∥∥∥

2
≤ εB.

Since by running algorithm 1 we update RLS estimates and their estimation
errors after every step we can try to solve at every time step a SDP

min
s∈[0,1),P�0,S

s

s.t.:

P− I ÂP + B̂S 0

(ÂP + B̂S)> P
(

εAP
εBS

)>
0

(
εAP
εBS

)
1
2 sI

 � 0.
(3.11)

The first time we find a feasible solution to SDP (3.11) we obtain the con-
troller K which stabilizes system A∗, B∗, with probability at least 1− δ, as
K = SP−1. As we have seen in section 3.1.1 we derived εA, εB based on
ellipsoid associated with positive definite matrix Ds. In the following we
will derive a semi-definite constraint which deals with ellipsoidal region Θ.
To formalize, we denote X> = (A B)− (Â B̂) and would like to solve the

40

3.2. Robust control synthesis

following problem:
find K

s.t.∀(A, B) with X>DX � I :
‖∆‖H∞

< 1.

(3.12)

Using the explicit value of ∆, presented in eq. (2.13), the eq. (3.12) is equiva-
lent to:

find K

∀X with X>DX � I :∥∥∥∥X>
(

I
K

)
(zI − Â− B̂K)−1

∥∥∥∥
H∞

< 1.

(3.13)

In the problem posed by eq. (3.13) there are two issues which we need to
solve. First there is the condition that we would like to find controller K for
which a constraint holds for every X with X>DX � I. We will solve this by
application of S-lemma (c.f. theorem 2.25). The other issue is the H∞ norm
which we will transform to semi-definite constraint by application of KYP
lemma (c.f. lemma 2.10).

First S then KYP lemma The constraint∥∥∥∥X>
(

I
K

)
(zI − Â− B̂K)−1

∥∥∥∥
H∞

< 1

is equivalent to the constraint that for every z ∈ ∂D:∥∥∥∥X>
(

I
K

)
(zI − Â− B̂K)−1

∥∥∥∥
2
< 1.

The latter constraint is equivalent to:

X>
(

I
K

)
(zI − Â− B̂K)−1(zI − Â− B̂K)−>

(
I
K

)>
X ≺ I

which is further equivalent to: I (zI − Â− B̂K)−>
(

I
K

)>
X

X>
(

I
K

)
(zI − Â− B̂K)−1 I

 � 0.

The problem given by eq. (3.13) is therefore equivalent to:

∀X with X>DX � I, ∀z ∈ ∂D : I (zI − Â− B̂K)−>
(

I
K

)>
X

X>
(

I
K

)
(zI − Â− B̂K)−1 I

 � 0.
(3.14)

41

3. Find stabilizing controller

By theorem 2.25, eq. (3.14) is further equivalent to:

∀z ∈ ∂D, ∃t ∈ (0, ∞) s.t. :
I 0 (zI − Â− B̂K)−>

(
I
K

)>
0 (1− t)I 0(

I
K

)
(zI − Â− B̂K)−1 0 tD

 � 0.

(3.15)
Observe that eq. (3.15) is then equivalent to:

∀z ∈ ∂D, ∃t ∈ (0, 1) s.t. : I (zI − Â− B̂K)−>
(

I
K

)>
(

I
K

)
(zI − Â− B̂K)−1 tD

 � 0.
(3.16)

Next observe that in eq. (3.16) if the positive definite constraint holds for one
t it will also hold for all t′ ∈ [t, 1). Therefore instead of searching at every
z ∈ ∂D for suitable t we can equivalently search uniformly in t – we can
take the supremum. Hence eq. (3.16) is equivalent to:

∃t ∈ (0, 1) s.t. ∀z ∈ ∂D : I (zI − Â− B̂K)−>
(

I
K

)>
(

I
K

)
(zI − Â− B̂K)−1 tD

 � 0.
(3.17)

Matrix D is positive definite hence D−
1
2 exists. Observe that conjugating

the positive definite constraint in eq. (3.17) with matrix diag(I, D−
1
2) the

eq. (3.17) is equivalent to:

∃t ∈ (0, 1) s.t. ∀z ∈ ∂D : I 1√
t
(zI − Â− B̂K)−>

(
I
K

)>
D−

1
2

1√
t
D−

1
2

(
I
K

)
(zI − Â− B̂K)−1 I

 � 0,

(3.18)
which is by using lemma 2.19 further equivalent to:

∃t ∈ (0, 1) s.t. ∀z ∈ ∂D :∥∥∥∥ 1√
t
D−

1
2

(
I
K

)
(zI − Â− B̂K)−1

∥∥∥∥
2
< 1.

(3.19)

42

3.2. Robust control synthesis

By the definition of H∞ norm this is further equivalent to:

∃t ∈ (0, 1) s.t. :∥∥∥∥ 1√
t
D−

1
2

(
I
K

)
(zI − Â− B̂K)−1

∥∥∥∥
H∞

< 1.
(3.20)

Now we are in the position to apply lemma 2.10. This yields that the
eq. (3.20) is equivalent to:

∃t ∈ (0, 1), ∃P � 0 s.t. : Â + B̂K I
1√

t
D−

1
2

(
I
K

)
0

(P 0
0 I

) Â + B̂K I
1√

t
D−

1
2

(
I
K

)
0

> � (P 0
0 I

)
.

(3.21)

Applying lemma 2.19 we observe that the positive definite constraint given
by eq. (3.21) is equivalent to:

P 0 Â + B̂K I

0 I 1√
t
D−

1
2

(
I
K

)
0

(Â + B̂K)> 1√
t

(
I
K

)>
D−

1
2 P−1 0

I 0 0 I

� 0 (3.22)

Conjugating with matrix diag(I,
√

tI, P, I) and denoting S = KP we obtain
that eq. (3.22) is equivalent to:

P 0 ÂP + B̂S I

0 tI D−
1
2

(
P
S

)
0

(ÂP + B̂S)>
(

P
S

)>
D−

1
2 P 0

I 0 0 I

� 0 (3.23)

Taking lemma 2.19 again we obtain that the eq. (3.23) is equivalent to:
P− I 0 ÂP + B̂S

0 tI D−
1
2

(
P
S

)
(ÂP + B̂S)>

(
P
S

)>
D−

1
2 P

 � 0 (3.24)

Conjugating by matrix I 0 0
0 0 I
0 I 0

43

3. Find stabilizing controller

we obtain that eq. (3.24) is further equivalent to:
P− I ÂP + B̂S 0

(ÂP + B̂S)> P
(

P
S

)>
D−

1
2

0 D−
1
2

(
P
S

)
tI

 � 0. (3.25)

We derived that the problem given by eq. (3.12) is equivalent to:

find t ∈ (0, 1), P � 0, S

s.t.

P− I ÂP + B̂S 0

(ÂP + B̂S)> P
(

P
S

)>
D−

1
2

0 D−
1
2

(
P
S

)
tI

 � 0.
(3.26)

Hence we can solve for example SDP:

min
t∈(0,1),P�0,S

t

s.t.

P− I ÂP + B̂S 0

(ÂP + B̂S)> P
(

P
S

)>
D−

1
2

0 D−
1
2

(
P
S

)
tI

 � 0.
(3.27)

From the optimal solution of SDP given by eq. (3.27) we obtain the stabiliz-
ing controller via K = SP−1.

3.2.2 Robust controller from SDP

In this section we will derive the robust controller synthesis based on the
SDP program described in section 2.5. First observe that the SDP given by
eq. (2.20) can be equivalently written in the form:

min
Σ�0

〈(
Q 0
0 R

)
, Σ
〉

s.t. Σxx � (A∗ B∗)Σ(A∗ B∗)> + σ2
w I,

(3.28)

Lemma 3.5 For the optimal Σ of SDP given by eq. (3.28) we have:

Σxx = (A∗ B∗)Σ(A∗ B∗)> + σ2
w I.

44

3.2. Robust control synthesis

Proof Assume that

Σxx = (A∗ B∗)Σ(A∗ B∗)> + σ2
w I + E,

where E � 0 and E 6= 0. Since

Σxx − E = (A∗ B∗)Σ(A∗ B∗)> + σ2
w I

� (A∗ B∗)
(

Σ−
(

E 0
0 0

))
(A∗ B∗)> + σ2

w I,

also

Σ−
(

E 0
0 0

)
is feasible solution. And since Q is positive semi-definite its cost is smaller
than the one of Σ. �

We will now write the SDP given by eq. (3.28) in a robust variant. Here we
denote Θ = {(A, B)|X>DX � I, X> = (A B)− (Â B̂)}:

min
Σ�0

〈(
Q 0
0 R

)
, Σ
〉

s.t. ∀(A, B) ∈ Θ : Σxx � (A B)Σ(A B)> + σ2
w I

(3.29)

Next we show that from any feasible solution Σ of the SDP given by eq. (3.29)
we can synthesize a controller K which stabilizes every system in Θ.

Lemma 3.6 Let Σ be a feasible solution of SDP given by eq. (3.29). Then we have:

1. Σ′ of the form

Σ′ =
(

Σxx ΣxxK>

KΣxx KΣxxK>

)
,

where K = ΣuxΣ−1
xx , is also feasible solution of the SDP given by (3.29) with

cost at most that of Σ.

2. For K = ΣuxΣ−1
xx we have: ∀(A, B) ∈ Θ : ρ(A + BK) < 1.

Proof Since

Σ− Σ′ =
(

0 0
0 Σuu − ΣuxΣ−1

xx Σxu

)
and Σuu−ΣuxΣ−1

xx Σxu is Schur complement of Σ we have Σuu−ΣuxΣ−1
xx Σxu �

0 and consequently Σ � Σ′. Now fix aribtrary (A, B) ∈ Θ. We have Σxx �

45

3. Find stabilizing controller

(A B)Σ(A B)> + σ2
w I � (A B)Σ′(A B)> + σ2

w I, therefore Σ′ is feasible. Next
we will show ρ(A + BK) < 1. The semi-definite inequality

Σxx � (A B)Σ′(A B)> + σ2
w I

is equivalent to:

Σxx � (A + BK)Σxx(A + BK)> + σ2
w I.

Let µ, v be eigenpair of (A + BK)>. We have:

vHΣxxv ≥ |µ|2 vHΣxxv + σ2
w ‖v‖

2 > |µ|2 vHΣxxv.

Hence |µ| < 1. �

In the following we will rewrite SDP given by eq. (3.29) to a convex SDP
using theorem 2.24. Inserting (A B) = X> + (Â B̂) to eq. (3.29) we obtain
that SDP given by eq. (3.29) is equivalent to:

min
Σ�0

〈(
Q 0
0 R

)
, Σ
〉

s.t. ∀(A, B) ∈ Θ :

Σxx − σ2
w I − X>ΣX− X>Σ(Â B̂)> − (Â B̂)ΣX− (Â B̂)Σ(Â B̂)> � 0

(3.30)
The latter is by theorem 2.24 equivalent to:

min
Σ�0,t≥0

〈(
Q 0
0 R

)
, Σ
〉

s.t.
(

Σxx − (Â B̂)Σ(Â B̂)> − (t + σ2
w)I (Â B̂)Σ

Σ(Â B̂)> tD− Σ

)
� 0.

(3.31)

This is a convex formulation of SDP and we can solve it using e.g. MOSEK
(ApS, 2020).

3.3 But they are the same

As we have seen in section 3.2 any controller which we synthesize from SDP
(3.27) or SDP (3.31) stabilizes every system inside ellipsoidal region around
estimates Â, B̂ given by {(A, B)|X>DX � I, X> = (A B) − (Â B̂)}. Even
though the way we obtained SDP (3.27) and SDP (3.31) are different we
show in this section that in fact they are the same, meaning that as soon as
one SDP is feasible the other is feasible as well. To see this first note that

46

3.3. But they are the same

semi-definite constraint in eq. (3.27) ca be rewritten as:
P− I (Â B̂)

(
I
K

)
P 0

P
(

I
K

)>
(Â B̂)> P P

(
I
K

)>
0

(
I
K

)
P tD

� 0. (3.32)

Conjugating by matrix I 0 0
0 0 I
0 I 0

we obtain that eq. (3.32) is equivalent to:

P− I 0 (Â B̂)
(

I
K

)
P

0 tD
(

I
K

)
P

P
(

I
K

)>
(Â B̂)> P

(
I
K

)>
P

� 0. (3.33)

We can rewrite eq. (3.33) using lemma 2.19 to:

(
P− I 0

0 tD

)
−

(Â B̂)
(

I
K

)
P(

I
K

)
P

 P−1

(
P
(

I
K

)>
(Â B̂)> P

(
I
K

)>)
� 0,

(3.34)

which is, by multiplying the matrices, further equivalent to:
P− (Â B̂)

(
I
K

)
P
(

I
K

)>
(Â B̂)> − I −(Â B̂)

(
I
K

)
P
(

I
K

)>
−
(

I
K

)
P
(

I
K

)>
(Â B̂)> tD−

(
I
K

)
P
(

I
K

)>
 � 0 (3.35)

We know by lemma 3.6 that the optimal solution of SDP (3.31) is parametrized
as

Σ =

(
Σxx ΣxxK>

KΣxx KΣxxK>

)
=

(
I
K

)
Σxx

(
I
K

)>

47

3. Find stabilizing controller

Hence by denoting U =

(
I
K

)
P
(

I
K

)>
we obtain that eq. (3.35) can be rewrit-

ten as: (
Uxx − (Â B̂)U(Â B̂)> − I −(Â B̂)U

−U(Â B̂)> tD−U

)
� 0 (3.36)

By lemma A.3 we further obtain that eq. (3.36) is equivalent to:(
Uxx − (Â B̂)U(Â B̂)> − I (Â B̂)U

U(Â B̂)> tD−U

)
� 0 (3.37)

To show that SDP (3.27) is feasible if and only if SDP (3.31) is feasible is then
equivalent to show that

∃U � 0, s ∈ (0, 1) s.t.:(
Uxx − (Â B̂)U(Â B̂)> − I (Â B̂)U

U(Â B̂)> sD−U

)
� 0

(3.38)

is equivalent to:

∃Σ � 0, t ≥ 0 s.t.:(
Σxx − (Â B̂)Σ(Â B̂)> − (t + σ2

w)I (Â B̂)Σ
Σ(Â B̂)> tD− Σ

)
� 0

(3.39)

Assume that we have eq. (3.38). Multiply semi-definite constraint in eq. (3.38)
with σ2

w
1−s and denote t = sσ2

w
1−s , Σ = σ2

w
1−s U. With such a notation we have:

(
Σxx − (Â B̂)Σ(Â B̂)> − (t + σ2

w)I (Â B̂)Σ
Σ(Â B̂)> tD− Σ

)
� 0. (3.40)

Since Σ = σ2
w

1−s U � 0 and t = sσ2
w

1−s ≥ 0 we see that condition given by eq. (3.39)
is satisfied. To show the equivalence in other direction assume that we have
eq. (3.39). Multiplying semi-definite constraint in eq. (3.39) with 1

t+σ2
w

and

denoting s = t
t+σ2

w
, U = 1

t+σ2
w

Σ we obtain:

(
Uxx − (Â B̂)U(Â B̂)> − I (Â B̂)U

U(Â B̂)> sD−U

)
� 0. (3.41)

Since U = 1
t+σ2

w
Σ � 0 and s = t

t+σ2
w
< 1 we obtain that eq. (3.38) is satisfied.

Hence we obtained that as soon as one of the SDP eq. (3.27) or SDP eq. (3.31)
is feasible, the other is feasible as well.

48

3.4. Minimize spectral norm of closed loop system

3.4 Minimize spectral norm of closed loop system

In this section we show how to synthesize a controller K which minimizes
the maximal closed loop system norm for systems in

Θ = {(A B)|X>DX � I, X> = (Â B̂)− (A B)}. (3.42)

We formulate the problem as:

min
t≥0,K

t

s.t. ∀(A B) ∈ Θ : ‖A + BK‖2 ≤ t.
(3.43)

If the optimal solution of the problem eq. (3.43) is less than 1, then controller
K stabilizes every system inside region Θ. Note that with this approach it
can happen that even if the Θ goes to zero, such a controller does not exist,
since ρ(A) ≤ ‖A‖2 and the difference can be arbitrarily large. To be specfic,
consider the system:

A∗ =

0.8 0 0
0 0.5 5
0 0 0.5

 , B∗ =

1
0
0

 .

The system is stabilizable since for controller K = 0 we have ρ(A∗ + B∗K) =
0.8 < 1, however for any controller K ∈ R1×3 we have 5 ≤ ‖A∗ + B∗K‖2.

Next we will transform problem eq. (3.43) to convex SDP using theorem 2.25.
To reformulate the problem in such a way observe first that the constraint
‖A + BK‖2 ≤ t can be rewritten using lemma 2.19 as:

‖A + BK‖2 ≤ t

⇐⇒ (A + BK)>(A + BK) � t2 I

lemma 2.19⇐⇒
(

tI (A + BK)>

A + BK tI

)
� 0

Using the notation from the definition of high probability region given in
eq. (3.42) we reformulate the minimization problem given by eq. (3.43) to:

min
t≥0,K

t

s.t. ∀X with X>DX � I :
tI (Â + B̂K)> −

(
I
K

)>
X(

(Â + B̂K)> −
(

I
K

)>
X

)>
tI

 � 0

(3.44)

49

3. Find stabilizing controller

Applying theorem 2.25 we obtain that the eq. (3.44) is equivalent to:

min
t≥0,λ≥0,K

t

s.t.

tI (Â + B̂K)> −

(
I
K

)>
Â + B̂K (t− λ)I 0

−
(

I
K

)
0 λD

 � 0
(3.45)

which is a convex SDP. At the same time we can also use SDP (3.45) to bound
for a given controller K′ the norm of associated closed loop matrix:

min
t≥0,λ≥0

t

s.t.

tI (Â + B̂K′)> −

(
I

K′

)>
Â + B̂K′ (t− λ)I 0

−
(

I
K′

)
0 λD

 � 0
(3.46)

For the optimal t which we obtain from the solution of SDP (3.46) we have
that with probability at least 1− δ:∥∥A∗ + B∗K′

∥∥
2 ≤ t.

3.5 Feasibility conditions

In section 3.2 we described how we can obtain a controller which stabilizes
every system inside some region Θ. The controller synthesis introduced
requires solving a SDP. As we start evolving the system usually the proposed
SDPs are not feasible and become feasible only after the region Θ shrinks
enough. In this section we will provide a sufficient condition for feasibility
of the proposed SDPs.

From lemma 2.9 follows that if (εA + εB ‖K‖2) ‖RA∗+B∗K‖H∞
≤ (1 +

√
2)−1

then the SDP given by eq. (3.11) is feasible. Denote by ε = εA ∨ εB. Then a
sufficient condition for feasibility of SDP given by eq. (3.27) is:

1√
λmin(D)

≤ 1
(1 + ‖K‖2) ‖RA∗+B∗K‖H∞

(1 +
√

2)
,

which is equivalent to:

O
((

(1 + ‖K‖2) ‖RA∗+B∗K‖H∞

)2
)
≤ λmin(D). (3.47)

50

3.6. eXploration termination

To rewrite the condition eq. (3.47) to a form without H∞ norm we first show
the following lemma:

Lemma 3.7 For any square matrix A with ρ(A) < 1 and for a positive definite
matrix P, which is the solution of the equation:

P = A>PA + I,

we have: ∥∥∥(zI − A)−1
∥∥∥
H∞
≤ 2

√
κ(P) ‖P‖2 .

Proof Since

(zI − A)−1 =
∞

∑
i=0

1
zi+1 Ai,

we have:∥∥∥(zI − A)−1
∥∥∥
H∞
≤ ∑

i≥0

∥∥∥Ai
∥∥∥

2
= ∑

i≥0

√
‖(Ai)>Ai‖

2

≤ ∑
i≥0

√
‖(Ai)>PAi‖2

σmin(P)

≤

√
σmax(P)
σmin(P) ∑

i≥0

√(
1− 1
‖P‖2

)i

=
√

κ(P)
1

1−
√

1− 1
‖P‖2

≤ 2
√

κ(P) ‖P‖2 ,

where we used the fact that P � I on multiple steps. �

Using SDP (2.20) we obtain:

Σ∗xx = (A∗ + B∗K∗)Σ∗xx(A∗ + B∗K∗)> + σ2
w I.

The by lemma 3.7 follows that a sufficient condition for SDP (3.27) to be
feasible is:

O
(
(1 + ‖K∗‖2)

2 ‖Σ∗xx‖
2
2 κ(Σ∗xx)

σ4
w

)
≤ λmin(D).

3.6 eXploration termination

To end this chapter will will show that if we use data driven estimation
errors which we obtain from Bayesian view on the problem, then the algo-
rithm 1 terminates with high probability. The termination time depends
solely on the system parameters as we will see in the following theorem.

51

3. Find stabilizing controller

Theorem 3.8 Let (A∗, B∗) be regular stabilizable system and let us use the no-
tation from above. Further assume that we play actions ui ∼ N (0, σ2

u I)), use
estimation region Θ = {(A, B)|X>DsX, X> = (A B)− (As Bs)} obtained from
the Bayesian setting and synthesize the controller via SDP (3.27) or (3.31). Then
Algorithm 1 will terminate with probability 1− δ in time

O
(
(1 + ‖K∗‖2)

4 ‖Σ∗xx‖
4
2 κ(Σxx)2

σ8
w

)
.

Proof From the results in section 3.5 we have that a sufficient condition to
successfully synthesize a controller via SDP (3.27) or SDP (3.31) is

O
(
(1 + ‖K∗‖2)

2 ‖Σ∗xx‖
2
2 κ(Σxx)

σ4
w

)
≤ λmin(Ds).

At the same time using the results from section 3.1.1 we see that running the
system for s steps we have Ds � Ω(s

log s)I. Hence we need to run the system
for s steps so that we have:

O
(
(1 + ‖K∗‖2)

2 ‖Σ∗xx‖
2
2 κ(Σxx)

σ4
w

)
≤ s

log s

Since we have
√

s ≤ s
log s we obtain that if we run the system for

O
(
(1 + ‖K∗‖2)

4 ‖Σ∗xx‖
4
2 κ(Σxx)2

σ8
w

)

steps the the Algorithm 1 will terminate with probability at least 1− δ. �

As we have seen in theorem 3.8 algorithm 1 terminates in time which de-
pends solely on system parameters, in particular it depends on the norm
of optimal controller K∗, norm and conditional number of the steady state
covariance matrix Σ∗xx and on the noise scale σW . Using the obtained results
we immediately see that the cost and with that also regret of the algorithm 1
is upper bounded by

‖A∗‖
O
(

(1+‖K∗‖2)4‖Σ∗xx‖4
2κ(Σxx)2

σ8
w

)
.

While this result tells us that if we use eXploration as an initialization for
the algorithms which need a stabilizing controller as an input we addition-
ally suffer only constant regret, this constant can be exponentially large.
Also note that the obtained bound is not the tightest bound possible. With
just a small modification where we would for any ε > 0 use the fact that
s1−ε ≤ s

log s for s large enough, we could already obtain a bound with better

52

3.6. eXploration termination

parameters. The question if we can find a stabilizing controller in the single
trajectory setting without suffering cost, which is exponential in system pa-
rameters is further addressed in chapters 5 and 7. Instead of playing zero
mean Gaussian actions we propose to use controllers based on the observed
data which heuristically reduce the norm of the state and consequently the
suffered cost.

53

Chapter 4

eXploration as initialization

In chapter 3 we have shown how we can find a controller which with high
probability stabilizes the system A∗, B∗ in time which depends only on the
system parameters. In this chapter we will show how we can initialize the
existing algorithms, such as OSLO (Cohen et al., 2019) or CEC (Simchowitz
and Foster, 2020), which require a stabilizing controller as an input, with
eXploration. Both algorithms, OSLO and CEC, consist of two parts. In the
first part, which we call warm up phase, they utilize the stabilizing controller
to obtain tight estimates of system matrices A∗, B∗, which knowledge they
utilize in the second part, where they choose actions optimistically (OSLO)
or greedily (CEC). Together with eXploration as initialization we obtain two
3-phased algorithms which we call X-OSLO and X-CEC.

The second phase of X-OSLO and X-CEC is given in algorithm 2. Param-
eter σ2

init is different for both algorithms, also the number of steps we run
algorithm 2 differs between OSLO and CEC.

Algorithm 2 Utilize the stabilizing controller

1: Input: Controller K with ρ(A∗ + B∗K) < 1
2: for i = 1, . . . do
3: observe state xi
4: play ui ∼ N (Kxi, σ2

init I)
5: end for

4.1 Initialization of OSLO

In the second phase of X-OSLO we set σ2
init = 2σ2

wκ2
0, where κ0 is the first of

the so called strongly stable parameters of the controller K.

Definition 4.1 A controller K is (κ, γ)-strongly stable for 0 < γ ≤ 1 if:

55

4. eXploration as initialization

1. ‖K‖2 ≤ κ

2. A∗ + B∗K = HLH−1, with ‖L‖2 ≤ 1− γ and ‖H‖2

∥∥H−1
∥∥

2 ≤ κ.

Here we call κ and γ the first and the second strongly stable parameter respectively.

In the rest of this section we will show we can obtain strongly stable param-
eter from the controller which we obtain from SDP eq. (3.27) or SDP (3.31)
and how we can modify the analysis of Cohen et al. (2019) to utilize the
knowledge of η with ρ(A∗ + B∗K) ≤ η < 1, where K is the controller which
we obtained either from SDP (3.11) or (3.27).

4.1.1 Strong stability parameters from robust SDP

In the following we denote K = ΣuxΣ−1
xx , where Σ is the optimal solution of

SDP (3.31).

Lemma 4.2 Let us be in the aforementioned setting and denote by ν = Tr(Σ) and
κ2 = ν

σ2
w

. Then controller K is (κ, 1
2κ2)-strongly stable.

Proof Since for every (A, B) ∈ Θ (also for (A∗, B∗)) holds Σxx � (A +
BK)Σxx(A + BK)> + σ2

w I we have σ2
w I � Σxx. Since we know Σ, we can

compute its trace ν = Tr(Σxx) + Tr(Σuu). With such a notation we have:
σ2

w I � Σxx � νI. Denote by L = Σ−1/2
xx (A∗ + B∗K)Σ1/2

xx . Multiplying equa-
tion

Σxx � (A∗ + B∗K)Σxx(A∗ + B∗K)> + σ2
w I

from left and right with Σ−1/2
xx we obtain:

I � LL> + σ2
wΣ−1

xx � LL> +
σ2

w
ν

I.

From there it follows:

LL> �
(

1− σ2
w
ν

)
I,

which yields: ‖L‖2 ≤
√

1− 1/κ2 ≤ 1− 1
2κ2 . In the notation of Definition 4.1

we have H = Σ1/2
xx . Since σ2

w I � Σxx � νI we have:
∥∥Σ1/2

xx
∥∥

2

∥∥Σ−1/2
xx

∥∥
2 ≤√

ν 1
σw

= κ. To finish the proof observe:

σ2
w ‖K‖

2
F ≤ Tr(KΣxxK>) = Tr(Σuu) ≤ ν,

from where we conclude: ‖K‖2 ≤ ‖K‖F ≤ κ. �

56

4.1. Initialization of OSLO

From the discussion in section 3.3 we see that we can obtain strong stability
parameters also from the solution of SDP (3.27). If we define

Σ′ =
σ2

w
1− t

(
I
K

)
P
(

I
K

)>
, t′ =

tσ2
w

1− t

then from the reformulation of SDP (3.27) given in section 3.3 follows that
Σ′, t′ are feasible solution of SDP (3.31) and hence the following lemma
holds:

Lemma 4.3 Let P, K, t be the paramters of the optimal soluton of SDP (3.27). Then
for κ2 = 1

1−t Tr(P(I + K>K)) controller K is (κ, 1
2κ2) strongly stable.

4.1.2 Adjusted Warm Up

As we have seen in the section 4.1.1 we can calculate the strong stability
parameters of the synthesized controller K and hence start the OSLO algo-
rithm. In the case when we synthesize the controller with SDPs (eq. (3.11),
eq. (3.27)) which we derived using SLS framework we, instead of the strong
stability parameters can calculate parameter η with ρ(A∗ + B∗K) ≤ η < 1.
In this section we will first show how we can calculate parameter η and
then modify the warm-up phase of X-OSLO algorithm to the extent that we
start it with knowledge of η instead of the knowledge of strong stability
parameter κ.

Compute η with ρ(A∗ + B∗K) ≤ η < 1 In this section we will show in
depth how we can obtain parameter η for SDP (3.11) introduced by Dean
et al. (2017). For the SDP given by eq. (3.27) the calculations are very similar
and we show only the direction how to obtain η in this case.

We first show an upper bound on the norm of resolvent of perturbed matrix.

Lemma 4.4 Let D ∈ Rd×d with ρ(D) < 1. Then for ε ≤ 1−ρ(D)
2ρ(D)

we have:

∥∥∥(zI − (1 + ε)D)−1
∥∥∥
H∞
≤ 2

1− ρ(D)

(
1 +

1
d− 1

(
1 +

4(‖D‖2
F −

∣∣Tr(D2)
∣∣)

ρ(D)2(1− ρ(D)2)

)) d−1
2

Proof By Corollary 2.28 we have:

∥∥∥(zI − (1 + ε)D)−1
∥∥∥
H∞
≤ 1

1− (1 + ε)ρ(D)

(
1 +

1
d− 1

(
1 +

(1 + ε)2(‖D‖2
F −

∣∣Tr(D2)
∣∣)

(1− (1 + ε)ρ(D))2

)) d−1
2

Plugging in the bound ε ≤ 1−ρ(D)
2ρ(D)

we obtain the result. �

57

4. eXploration as initialization

In what comes next we will denote

f (D) :=
2

1− ρ(D)

(
1 +

1
d− 1

(
1 +

4(‖D‖2
F −

∣∣Tr(D2)
∣∣)

ρ(D)2(1− ρ(D)2)

)) d−1
2

.

Proposition 4.5 Let s∗ be the minimal value, Â, B̂ the estimates, εA, εB upper
bounds and K synthesized from SDP (3.11). Denote D = Â + B̂K. Then we have:

ρ(A∗ + B∗K) <
1

1 + ε
,

where ε = min
(

1−ρ(D)
2ρ(D)

,
√

1+(1/s∗−1)‖D‖2 f (D)−1
2‖D‖2 f (D)

)
.

Proof Observe that the condition ρ(A∗+ B∗K) < 1
1+ε is equivalent to ρ(A′∗+

B′∗K) < 1, where we denote by A′∗ = (1 + ε)A∗, B′∗ = (1 + ε)B∗. Let us
further denote by Â′ = (1 + ε)Â, B̂′ = (1 + ε)B̂ and ε′A = (1 + ε)εA, ε′B =
(1 + ε)εB.

From the eq. (2.14) we obtain that the sufficient condition for ρ(A′∗+ B′∗K) <
1 is: ∥∥∥∥(√2ε′A I√

2ε′BK

)(
zI − Â′ − B̂′K

)−1
∥∥∥∥
H∞

< 1,

which is equivalent to:∥∥∥∥(√2εA I√
2εBK

)
(zI − (1 + ε)D)−1

∥∥∥∥
H∞

<
1

1 + ε
,

Next denote by C =

(√
2εA I√
2εBK

)
and bound:∥∥∥C (zI − (1 + ε)D)−1

∥∥∥
H∞

=
∥∥∥C
(
(zI − D)−1 + ε (zI − D)−1 D (zI − (1 + ε)D)−1

)∥∥∥
H∞

≤
∥∥∥C (zI − D)−1

∥∥∥
H∞

(
1 + ε ‖D‖2

∥∥∥(zI − (1 + ε)D)−1
∥∥∥
H∞

)
,

where we used the equality (X + Y)−1 = X−1 + X−1Y(X + Y)−1. Then by
eq. (2.16) and lemma 4.4 follows:∥∥∥C (zI − (1 + ε)D)−1

∥∥∥
H∞
≤
√

s∗ (1 + ε ‖D‖2 f (D)) .

The right hand side is smaller than 1/(1 + ε) by setting

ε = min

(
1− ρ(D)

2ρ(D)
,

√
1 + (1/s∗ − 1) ‖D‖2 f (D)− 1

2 ‖D‖2 f (D)

)
.

For such a choice of ε then follows:

ρ(A∗ + B∗K) <
1

1 + ε
. �

58

4.1. Initialization of OSLO

Since matrix Â + B̂K and scalar s∗ are known after we synthesize the con-
troller, we can compute ε given in Proposition 4.5 and hence we found
η, defined as η = 1

1+ε , which we can compute, and for which we have
ρ(A∗ + B∗K) ≤ η < 1.

In the case of SDP (3.27) we can obtain that for optimal solution t∗ we have:∥∥∥∥X>
(

I
K

)
(zI − Â− B̂K)−1

∥∥∥∥
H∞

<
√

t∗.

We than find η with property ρ(A∗+ B∗K) ≤ η < 1 with a similar derivation
as presented for the case of SDP (3.11).

Refined analysis of OSLO’s warm-up phase To analyze the case when we
would like to utilize knowledge of η with ρ(A∗ + B∗K) ≤ η < 1 we further
need to know how to bound the norm of power of closed loop matrix. The
following lemma will come handy.

Lemma 4.6 (Matrix power norm bound) Let A ∈ Rd×d with ρ(A) < 1. Then
we have:

∥∥∥Ak
∥∥∥

2
≤
(

1 + ρ(A)

2

)k+1 2
1− ρ(A)

(
1 +

1
d− 1

(
1 +

4(‖A‖2
F −

∣∣Tr(A2)
∣∣)

(1− ρ(A))2

)) d−1
2

Proof Since ρ(A) < 1 the curve which parametrizes the circle ∂Bd
2

(
1+ρ(A)

2

)
in the positive way contains in its interior all the eigenvalues of A. Hence
we can use Theorem 2.26 and compute∥∥∥Ak

∥∥∥
2
≤ 1

2π

∫
∂Bd

2

(
1+ρ(A)

2

) |z|k ‖RA(z)‖2 dz

≤ 1
π(1− ρ(A))

(
1 +

1
d− 1

(
1 +

4(‖A‖2
F −

∣∣Tr(A2)
∣∣)

(1− ρ(A))2

)) d−1
2 ∫

∂Bd
2

(
1+ρ(A)

2

) |z|k dz

=

(
1 + ρ(A)

2

)k+1 2
1− ρ(A)

(
1 +

1
d− 1

(
1 +

4(‖A‖2
F −

∣∣Tr(A2)
∣∣)

(1− ρ(A))2

)) d−1
2

,

where we used Theorem 2.27 in the second inequality. �

Now we present the refined analysis of Cohen et al. (2019) where we lever-
age the knowledge of η with ρ(A∗+ B∗K) ≤ η < 1. In the rest of this section
we denote by

C0 =
2

1− η

(
1 +

1
d− 1

(
1 +

4(‖A∗ + B∗K‖2
F −

∣∣Tr((A∗ + B∗K)2)
∣∣)

η2(1− η)2

)) d−1
2

.

59

4. eXploration as initialization

Using data dependent upper bounds we can compute a high probability
upper bound ϑ for ‖(A B)‖2. Further with the use of ϑ we can compute an
upper bound for C0.

Lemma 4.7 Let x0, x1, . . . be a sequence of states starting from state x0 and gener-
ated by dynamics (1.1) following a policy K, synthesized from SDP (3.11). Then we
have:

‖xi‖2 ≤ C0

(
1 + η

2

)i+1

‖x0‖2 +
2C0

1− η

i−1
max

j=0

∥∥Bζ j + wj+1
∥∥

2

Proof Since we stick to the policy K, we have xi+1 = (A + BK)xi + Bζi +
wi+1, where ζi ∼ N (0, 2κ2

0σ2
w I). From there it follows:

xi = (A + BK)ix0 +
i−1

∑
j=0

(A + BK)i−j−1(Bζ j + wj+1).

Using first triangle inequality and then Lemma 4.6 we obtain:

‖xi‖2 ≤
∥∥∥(A + BK)i

∥∥∥
2
‖x0‖2 +

i−1

∑
j=0

∥∥∥(A + BK)i−j−1
∥∥∥

2

∥∥Bζ j + wj+1
∥∥

2

≤ C0

(
1 + η

2

)i+1

‖x0‖2 + C0
i−1

max
j=0

∥∥Bζ j + wj+1
∥∥

2

∞

∑
i=0

(
1 + η

2

)i

= C0

(
1 + η

2

)i+1

‖x0‖2 +
2C0

1− η

i−1
max

j=0

∥∥Bζ j + wj+1
∥∥

2 �

In the next lemma we will apply a corollary 2.15 of Hanson-Wright inequal-
ity and bound the maximal norm of the noise.

Lemma 4.8 Let δ ∈ (0, 1
e). With probability at least 1− δ for all i = 1, . . . T0 we

have:

‖xi‖2 ≤ C0

(
1 + η

2

)i+1

‖x0‖2 +
2
√

5C0σw

1− η

√
(dx + 2duκ2

0ϑ2) log
T0

δ

Proof In order to use Lemma 4.7 we need to bound maxT0−1
j=0

∥∥Bζ j + wj+1
∥∥

2.
Since Bζ j + wj+1 ∼ N (0, 2σ2

wκ2
0BB> + σ2

w I) we can use Corollary 2.15. For
every 0 ≤ j ≤ T0 − 1 we have w.p. at least 1− δ

T0
:∥∥Bζ j + wj+1

∥∥2
2 ≤ 5σ2

w(dx + 2κ2
0 ‖B‖

2
F) log

T0

δ
.

Using union bound and Lemma 4.7 we obtain that we have w.p. at least
1− δ:

‖xi‖2 ≤ C0

(
1 + η

2

)i+1

‖x0‖2 +
2
√

5C0η

1− η

√
(dx + 2duκ2

0ϑ2) log
T0

δ
,

which finishes the proof. �

60

4.1. Initialization of OSLO

The rest of the analysis which shows that running phase 2 for Õ(
√

T) rounds
yields a controller with tight enough estimates to start phase 3 is very similar
to the analysis presented in the proof of Theorem 20 in (Cohen et al., 2019)
and hence we omit it here.

Optimal infinite horizon cost upper bound We can start with optimistic
phase of OSLO when we have estimates Â, B̂ with ‖(Â B̂) − (A∗ B∗)‖2

F ≤
c α5

0σ10
w

ν5ϑ
√

T
. Here α0 = min(λmin(Q), λmin(R)), c universal constant, σw, ϑ, T as

defined above and ν an upper bound for the optimal expected infinite hori-
zon cost J∗. We will now show how we can compute ν from the optimal
solution of SDP with which we finish phase 1 of X-OSLO.

If we choose action ui = Kxi, where K ∈ Rk×d is a fixed matrix for which
it holds ρ(A∗ + B∗K) < 1, then the infinite horizon cost associated with this
policy is equal to the solution of the minimization problem (c.f. (Cohen et al.,
2018)):

min
X�0

〈
Q + K>RK, P

〉
,

s.t. P = (A∗ + B∗K)P(A∗ + B∗K)> + σ2
w I.

(4.1)

Note that SDP (4.1) is just a non convex formulataion of SDP (2.20). We
denote the expected infinite horizon cost for such a policy with J(A∗, B∗, K).
With the next lemma we reformulate lemma 3.5.

Lemma 4.9 Let ν∗ be minimal value of (4.1) and ν′ minimal value of

min
P�0

〈
Q + K>RK, P

〉
,

s.t. P � (A∗ + B∗K)P(A∗ + B∗K)> + σ2
w I.

(4.2)

Then it holds ν∗ = ν′.

The next lemma will show how can we remove the σ2
w term from constraint

to the minimization term.

Lemma 4.10 The minimal value of the optimization problem (4.1) is equal to the
optimal value of:

min
P�0

σ2
w

〈
Q + K>RK, P

〉
,

s.t. P = (A∗ + B∗K)P(A∗ + B∗K)> + I.
(4.3)

Proof First notice that the optimal value of (4.1) is equal to:

lim
T→∞

1
T

T

∑
i=0

E
(

x>i Qxi + u>i Rui

)
.

61

4. eXploration as initialization

Since ui = Kxi we obtain:

lim
T→∞

1
T

T

∑
i=0

E
(

x>i Qxi + u>i Rui

)
= lim

T→∞

1
T

T

∑
i=0

E
(

x>i Qxi + x>i K>RKxi

)
= lim

T→∞

1
T

T

∑
i=0

Tr
((

Q + K>RK
)

E[xix>i]
)

= Tr

((
Q + K>RK

)
lim

T→∞

1
T

T

∑
i=0

E[xix>i]

)

Let us look at the term limT→∞
1
T ∑T

i=0 E[xix>i]. Since xi = ∑i
j=1(A∗+ B∗K)i−jwj

we obtain:

lim
T→∞

1
T

T

∑
i=0

E[xix>i] = lim
T→∞

1
T

T

∑
i=0

E

[
i

∑
j=1

(A∗ + B∗K)i−jwjw>l ((A∗ + B∗K)>)i−j

]

= σ2
w lim

T→∞

1
T

T

∑
i=0

E

[
i

∑
j=1

(A∗ + B∗K)i−j wj

σw

wl

σw

>
((A∗ + B∗K)>)i−j

]
.

Hence (due to the linearity of trace operator) if we calculate the infinite
horizon cost as if the process noise has covariance matrix equal to I we
need to multiply the infinite horizon cost with σ2

w to obtain the true infinite
horizon cost. �

To finish we will first show a result presented by Dean et al. (2017) and then
use it to to arrive at an upper bound for J∗.

Lemma 4.11 Let P, K = SP−1, s be a feasible solution of SDP (3.11). Then we
have:

J(A∗, B∗, K) ≤ 1
1−
√

s
J(Â, B̂, K).

Lemma 4.12 Let s∗, P, K be parameters of the optimal solution of SDP (3.11). Then
we have:

J∗ ≤ σ2
w

1−
√

s∗

〈
Q + K>RK, P

〉
Proof First we will use the fact that if a matrix is positive semi definite
then all its minors are also positive semi definite. Since s∗, P, K are optimal
solution to SDP (3.11) they are also feasible solution and hence we have:(

P− I (Â + B̂K)P
P(Â + B̂K)> P

)
� 0.

62

4.2. Initialization of CEC

Since P � 0, the latter is by Schur’s complement lemma equivalent to:

P− I − (Â + B̂K)PP−1P(Â + B̂K)> � 0.

Reordering the terms we obtain:

P � (Â + B̂K)P(Â + B̂K)> + I

Since P � (Â + B̂K)P(Â + B̂K)> + I, we obtain:

J(Â, B̂, K) ≤ σ2
w

〈
Q + K>RK, P

〉
.

To finish the proof we use lemma 4.11:

J∗ ≤ J(A∗, B∗, K) ≤ 1
1−
√

s∗
J(Â, B̂, K) ≤ σ2

w

1−
√

s∗

〈
Q + K>RK, P

〉
. �

In the latter derivation we show how we obtain the bound J∗ ≤ ν from
SDP (3.11) or SDP (3.27). For SDP (3.31) we have that the optimal solution
is already the upper bound for J∗. Hence we showed that by first identify-
ing the stable controller with any SDP among (3.11), (3.27), (3.31) we can
then start OSLO algorithm. Using the data dependent upper bounds which
we obtained from the Bayesian setting the phase of identifying the stable
controller finishes in constant time and hence adds constant albeit exponen-
tially large cost in system parameters to the total regret. Using Corollary 5
of Cohen et al. (2019) we obtain the following theorem.

Theorem 4.13 Suppose the system matrices A∗, B∗ are stabilizable and regular,
cost matrices Q, R are positive definite and time horizon is T. Then by first running
eXploration, where we synthesize the controller with any SDP (3.11), (3.27), (3.31),
using data dependent upper bounds from the Bayesian setting, and then OSLO
algorithm, the total regret we suffer is upper bounded with probability at least 1− δ
as:

R(T, X-OSLO) = O
(√

T log2 T
)

.

4.2 Initialization of CEC

Initialization of CEC requires only the stabilizing controller K. Hence we
can directly state the theorem.

Theorem 4.14 Suppose the system matrices A∗, B∗ are stabilizable and regular,
cost matrices Q, R are positive definite, time horizon is T and probability of fail-
ure is δ ∈ (0, 1

T). Then by first running eXploration, where we synthesize the
controller with any SDP (3.11), (3.27), (3.31), using data dependent upper bounds

63

4. eXploration as initialization

from the Bayesian setting, and then CEC algorithm, the total regret we suffer is
upper bounded with probability at least 1− δ as:

R(T, X-CEC) = O
(√

T log T
)

.

The proof follows directly from the Theorem 2 of Simchowitz and Foster
(2020) and Theorem 3.8.

64

Chapter 5

Improved eXploration strategies

The basic eXploration approach (Phase I of X-OSLO and X-CEC) takes ran-
dom actions ui ∼ N (0, σ2

u I). For this choice we can guarantee that Phase I
terminates after constant time, depending solely on the system parameters.
However, as we demonstrate in our experiments (c.f., fig. 6.4), the states can
grow exponentially during this phase, which can be highly problematic for
certain applications. We now propose improved, data-dependent policies to
counteract this blow-up.

In particular, we consider playing ui ∼ N (Kixi, σ2
u I), where Ki is a controller

picked at time i. Applying such a controller, we generally lose the theoret-
ical guarantee that the Phase I will end. However, the upper bounds on
estimation error from the Bayesian setting (and thus the validity of the stop-
ping condition) still hold and we can run Algorithm 1. Here, we discuss
four different choices for controller Ki that we study in our experiments.

As first possibility, we could act as if the estimators Ai, Bi are the true system
matrices and we compute the controller Ki as the optimal controller: Ki =
−(R+ B>i PBi)

−1B>i PAi, where P = Q+ A>i PAi−A>i PBi(R+ B>i PBi)
−1B>i PAi,

i.e., we act using certainty equivalent control.

For the second Ki we consider SDP (3.45). At every time step we synthesize
the controller for which we have that

max
(A,B)∈Θ

‖A + BK‖2

is minimal among all the controllers. We call this controller MinMax con-
troller.

As third alternative we use relaxed version of SDP (3.27). We relax the con-
straint t ∈ (0, 1) to t ≥ 0. With such a relaxed constraint the obtained
SDP is always feasible. There are two possible interpretations for this relax-
ations. The first is that by allowing values t ≥ 1 we try to stabilize smaller

65

5. Improved eXploration strategies

ellipsoidal region. Instead of trying to stabilize ellipsoidal region associated
with positive definite matrix D, we are trying to stabilize ellipsoidal region
associated with positive definite matrix tD. Another way of interpreting this
result is that instead we are trying to find the smallest t such that we have
a guarantee that with synthesized controller the maximal eigenvalue of the
closed loop system associated with any system A, B in ellipsoidal region is
at most

√
t. We call this control RelaxedSDP control.

Lastly, the fourth controller we consider is the so called DeadBeat controller.
With the RLS estimates Ai, Bi we synthesize the controller Ki as:

Ki = argmin
K
‖(Ai + BiK)xi‖2 .

To compute Ki we use semi-definite program:

min
K,t

t (5.1)

s.t.
(

t x>i (Ai + BiK)>

(Ai + BiK)xi tI

)
� 0. (5.2)

The controller which minimizes SDP (5.1) is Ki.

In order to obtain a guarantee that the Phase I ends when we use a non-
trivial Ki, we restrict ourselves to the case when matrix B∗ is known and has
a full row rank. In this case, we can without loss of generality assume that
B∗ is the identity, and the learner only needs to learn matrix A∗. This setting
is, in the one dimensional case, discussed by Rantzer (2018). They show that
as long as actions ui are measurable functions of the past (any controller
Ki satisfies this) we have for ordinary least squares (OLS) estimator As that
‖As − A∗‖ ≤ O(1/

√
s). A natural question that arises then is whether one

can obtain estimation error of O(1/
√

s) for arbitrary measurable actions of
the past also for the case of state dimension dx with dx ≥ 2. We show now
that when dx ≥ 2, perhaps surprisingly, there exists a controller for which
the OLS estimator is not consistent. The intuition behind this lies in the fact
that in the one-dimensional case the smallest singular value of the empirical
covariance matrix ∑i xix>i is equal to the largest one, while in case dx ≥ 2
this does not hold, and the estimation procedure might not be consistent
anymore.

5.1 Inconsistency of OLS in case dx > 1

The construction will be based on the inconsistency of OLS estimator. Nielsen
(2008) and Phillips and Magdalinos (2013) show that in the case when A∗ is
irregular and the system evolves as xi+1 = A∗xi + wi+1, the OLS estimator

66

5.2. Convergence in the constrained case

is inconsistent. Their result shows that

(Ao
s − A∗)> =

(
s−1

∑
i=0

xix>i

)−1 s−1

∑
i=0

xiw>i+1

does not converge in probability towards zero. To show that we can take
such actions ui, which will lead to inconsistent OLS estimator Ao

s of matrix
A∗ we will assume that we know matrix A∗, however we would still like to
compute its OLS estimator. For that select actions ui as ui = (2Id − A∗)xi.
Since ui is a measurable function of xi it is also a measurable function of
(xj)j≤i. With such a control the system evolves as:

xi+1 = A∗xi + ui + wi+1 = A∗xi + (2Id − A∗)xi + wi+1 = 2Idxi + wi+1.

At the same time for OLS estimator Ao
s it holds:

(Ao
s − A∗)

> =

(
s−1

∑
i=0

xix>i

)−1 s−1

∑
i=0

xiw>i+1 (5.3)

Since 2Id is irregular matrix, the right hand side of the eq. (5.3) by result of
Nielsen (2008) does not converge towards zero. Hence we have shown that
there exist a sequence of measurable actions for which the OLS estimator
does not converge.

5.2 Convergence in the constrained case

As we have seen in section 5.1 OLS estimator does not converge for all mea-
surable actions ui. However, we can still prove convergence under some
additional assumptions, as stated in the next theorem. From the conducted
experiments we observed that usually we find a controller which stabilizes
the underlying system before we have a guarantee for that. Theorem 5.1
shows that in such setting, even if the controller varies the estimation will
be consistent.

Theorem 5.1 Let xi+1 = A∗xi + ui + wi+1, x0 = 0, where xi ∈ Rd, (wi)i≥1
i.i.d.∼

N (0, σ2
w I) and actions ui = Kixi are chosen in such a way that for every time i we

have: ‖xi‖2 ≤ M1 and ‖A∗ + Ki‖2 ≤ M2 for some constants M1, M2, which do
not depend on time. Then at every time s we have for the RLS estimator As of the
matrix A∗ with probability at least 1− δ:

‖As − A∗‖2 ≤
O(1)(dx log s + log 1

δ)√
s

The strategy to prove theorem 5.1 will be the following. We first use the
explicit RLS formula and bound:

‖As − A∗‖2 ≤
∥∥∥(Vs + λI)−

1
2

∥∥∥
2

∥∥∥(Vs + λI)−
1
2 Ss

∥∥∥
2
+ λ ‖A∗‖2

∥∥∥(Vs + λI)−1
∥∥∥

2
,

67

5. Improved eXploration strategies

and then show that
∥∥∥(Vs + λI)−

1
2

∥∥∥
2
= O(1/

√
s) and

∥∥∥(Vs + λI)−
1
2 Ss

∥∥∥
2
=

O(1)
(
dx log s + log 1

δ)
)
.

The toughest part is to show that
∥∥∥(Vs + λI)−

1
2

∥∥∥
2
= O(1/

√
s), which is

equivalent to show that Vs � Ω(s)I. Let us begin with a simple lemma
which was proven by Sarkar and Rakhlin (2018).

Lemma 5.2 Let P, Q ∈ Rd×d such that P � 0. Assume ‖Q‖P−1 ≤ γ. Then for
every vector v for which it holds v>Pv = α we have:

∥∥v>Q
∥∥

2 ≤
√

αγ

Next we show a decomposition of Vs to three parts. We will later show that
the sum of the first two terms contribute at least −Θ(log s) and the last term
at least Ω(s) to the smallest eigenvalue of Vs with high probability.

Lemma 5.3 Let yi = (A∗ + Ki)xi. Then for every s ≥ 1 we have:

Vs =
s−2

∑
i=0

yiy>i +
s−2

∑
i=0

(
yiw>i+1 + wi+1y>i

)
+

s−2

∑
i=0

wi+1w>i+1

Proof By inserting Vs = ∑s−1
i=0 xix>i and using the initial condition x0 = 0 we

obtain:

Vs =
s−1

∑
i=0

xix>i =
s−1

∑
i=1

xix>i =
s−2

∑
i=0

xi+1x>i+1

=
s−2

∑
i=0

((A∗ + Ki)xi + wi+1)((A∗ + Ki)xi + wi+1)
> =

s−2

∑
i=0

(yi + wi+1)(yi + wi+1)
>

=
s−2

∑
i=0

(
yiy>i + yiw>i+1 + wi+1y>i + wi+1w>i+1

)
=

s−2

∑
i=0

yiy>i +
s−2

∑
i=0

(
yiw>i+1 + wi+1y>i

)
+

s−2

∑
i=0

wi+1w>i+1 �

We now show an upper bound on the norm of the middle term, normalized
with the regularized first term of the Vs decomposition.

Lemma 5.4 Let us be in setting of this section. Then we have w.p. at least 1− δ:

∀s ≥ 1 :

∥∥∥∥∥s−2

∑
i=0

yiw>i+1

∥∥∥∥∥
2

(∑s−2
i=0 yiy>i +I)

−1
≤ 8σ2

wdx

(
log s + log

5M2
1 M2

2
δ1/dx

)

Proof Denote by Fs = σ ((wi)i≤s) and F = (Fs)s≥0. With this notation
(yi)i≥0 is stochastic process in Rdx adopted to filtration F . Further denote

68

5.2. Convergence in the constrained case

by V = I. Now we apply Lemma 3.2 with ε = 1
2 and obtain:

∀s ≥ 1 :

∥∥∥∥∥s−2

∑
i=0

yiw>i+1

∥∥∥∥∥
2

(∑s−2
i=0 yiy>i +I)

−1
≤ 8σ2

w log

det
(

∑s−2
i=0 yiy>i + I

)
det(I)

5dx

δ

 .

(5.4)

Since

s−2

∑
i=0

yiy>i �
s−2

∑
i=0
‖yi‖2

2 I �
s−2

∑
i=0
‖A∗ + Ki‖2

2 ‖xi‖2
2 I � M2

2 M2
1(s− 1)I,

we have

det

(
s−2

∑
i=0

yiy>i + I

)
≤ det

(
M2

1 M2
2sI
)
=
(

M2
1 M2

2s
)dx .

Therefore the upper bound from eq. (5.4) is upper bounded by

8σ2
w log

det
(

∑s−2
i=0 yiy>i + I

)
det(I)

5dx

δ

 ≤ 8σ2
w log

(
(5M2

1 M2
2s)dx

δ

)

= 8σ2
wdx

(
log s + log

5M2
1 M2

2
δ1/dx

)
,

which concludes the proof. �

Next we show that the sum of first two terms contributes at least −Θ(log s)
towards the smallest eigenvalue of Vs.

Lemma 5.5 For any u ∈ Sdx−1 we have w.p at least 1− δ for every s ≥ 1:

u>
s−1

∑
i=0

yiy>i u + u>
s−2

∑
i=0

(
yiw>i+1 + wi+1y>i

)
u ≥ −8σ2

wdx

(
log s + log

5M2
1 M2

2
δ1/dx

)
− 1

Proof First observe that the LHS can be rewritten as:

u>
s−1

∑
i=0

yiy>i u + 2u>
s−2

∑
i=0

yiw>i+1u = u>Pu + 2u>Qu,

where P = ∑s−1
i=0 yiy>i and Q = ∑s−2

i=0 yiw>i+1. By Lemma 5.4 we have:

‖Q‖(P+I)−1 ≤

√
8σ2

wdx

(
log s + log

5M2
1 M2

2
δ1/dx

)

69

5. Improved eXploration strategies

Denote by u>(P + I)u = α2. Then we have by Lemma 5.2:

∥∥∥u>Q
∥∥∥

2
≤ α

√
8σ2

wdx

(
log s + log

5M2
1 M2

2
δ1/dx

)
Hence:

u>Pu + 2u>Qu = u>(P + I)u + 2u>Qu− 1

≥ α2 − 2
∥∥∥u>Q

∥∥∥
2
‖u‖2 − 1

= α2 − 2
∥∥∥u>Q

∥∥∥
2
− 1

≥ α2 − 2α

√
8σ2

wdx

(
log s + log

5M2
1 M2

2
δ1/dx

)
− 1

The last expression is quadratic function in α which attains its minimum at

α =

√
8σ2

wdx

(
log s + log

5M2
1 M2

2
δ1/dx

)
.

Plugging this expression for α we arrive at:

u>Pu + 2u>Qu ≥ −8σ2
wdx

(
log s + log

5M2
1 M2

2
δ1/dx

)
− 1. �

Next theorem tells us how to bound the smallest singular value of a matrix
which rows are independent Gaussian vectors. We will use this theorem to
first show that that the last term of Vs decomposition is lower bounded by
Ω(s)I in Corollary 5.7. We will then join this result with the result from
Lemma 5.5 to obtain Vs � Ω(s)I in Proposition 5.8.

Theorem 5.6 (Corollary 5.35 in Vershynin (2010)) Let W be a s × d matrix,
whose rows are independent N (0, I) random vectors in Rd. Then for every t ≥ 0

with probability at least 1− e−
t2
2 we have:

√
s−
√

d− t ≤ σd(W)

Corollary 5.7 Let (wi)i≥1
i.i.d.∼ N (0, σ2

w I). Then for every s ≥ 1 we have w.p. at
least 1− δ :

s−1

∑
i=1

wiw>i � σ2
w

(
√

s− 1−
√

d−
√

2 log
1
δ

)2

I

70

5.2. Convergence in the constrained case

Proof First observe ∑k−1
i=1 wiw>i = σ2

wW>W, where

W> =
(

1
σw

w1
1

σw
w2 · · · 1

σw
ws−1

)
∈ Rd×(s−1).

From Theorem 5.6 it follows σd(W) ≥
√

s− 1−
√

d −
√

2 log 1
δ , which im-

plies σd(W>W) ≥
(√

s− 1−
√

d−
√

2 log 1
δ

)2

. �

Proposition 5.8 Let us be in the setting of this section. Then we have for all s ≥ 1
w.p. at least 1− δ:

Vs � σ2
w

(√s−
√

dx −
√

2 log
2
δ

)2

− 8dx

(
log s + log

5M2
1 M2

2
δ1/dx

)
− 1

 I

Proof By Lemma 5.3 we have:

Vs =
s−2

∑
i=0

yiy>i +
s−2

∑
i=0

(
yiw>i+1 + wi+1y>i

)
+

s−2

∑
i=0

wi+1w>i+1

Let u ∈ Sdx−1 be arbitrary. We will now lower bound u>Vku:

u>Vsu = u>
s−2

∑
i=0

yiy>i u + 2u>
s−2

∑
i=0

yiw>i+1u︸ ︷︷ ︸
Part 1

+ u>
s−2

∑
i=0

wiw>i u︸ ︷︷ ︸
Part 2

.

By Lemma 5.5, Part 1 is lower bounded by −8σ2
wdx

(
log s + log 5M2

1 M2
221/dx

δ1/dx

)
−

1 w.p. at least 1− δ
2 . By Corollary 5.7, Part 2 term is lower bounded w.p.

at least 1− δ
2 by σ2

w

(√
s− 1−

√
dx −

√
2 log 2

δ

)2

. Using union bound we

obtain that w.p. at least 1− δ we have:

u>Vsu ≥ σ2
w

(
√

s− 1−
√

dx −
√

2 log
2
δ

)2

− 8σ2
wdx

(
log s + log

5M2
1 M2

221/dx

δ1/dx

)
− 1.

Since u ∈ Sdx−1 was arbitrary we have w.p. at least 1− δ:

Vs � σ2
w

(√s− 1−
√

dx −
√

2 log
2
δ

)2

− 8dx

(
log s + log

5M2
1 M2

221/dx

δ1/dx

)
− 1

 I,

which concludes the proof. �

71

5. Improved eXploration strategies

Since by Proposition 5.8 we have σdx(Vs) ≥ O(s) we also have: σdx(Vs +
λI) ≥ σdx(Vs) ≥ O(s). Now the proof of Theorem 5.1 easily follows. By
application of Lemma 3.2 with ε = 1

2 we further obtain that we have w.p. at
least 1− δ:

∥∥∥(Vs + λI)−
1
2 Ss

∥∥∥2

2
≤ 8σ2

w log

det
(

∑s−1
i=0 xix>i + λI

)
det(λI)

5dx

δ

≤ 8σ2

w log

(
((s− 1)M1 + λ)dx

λdx

5dx

δ

)

= 8σ2
wdx

(
log

(s− 1)M1 + λ

λ
+ log

5
δ1/dx

)

Using union bound we have w.p. at least 1− 2δ:

‖As − A∗‖2 ≤
8dx

(
log (s−1)M1+λ

λ + log 5
δ1/dx

)
√√√√((√s− 1−

√
dx −

√
2 log 2

δ

)2

− 8dx

(
log s + log 5M2

1 M2
221/dx

δ1/dx

)
− 1

)

+
λ ‖A∗‖2

σ2
w

((√
s− 1−

√
dx −

√
2 log 2

δ

)2

− 8dx

(
log s + log 5M2

1 M2
221/dx

δ1/dx

)
− 1

)

Hence we have established that ‖As − A∗‖2 ≤
O(1)(d log s+log 1

δ)√
s . The same

analysis as in the proof of Theorem 3.8 then shows that in this setting eXplo-
ration finishes in constant (in T) time.

72

Chapter 6

Numerical experiments

6.1 Comparison of error bounds

In this section we will compare the data dependent estimation error bounds
εA, εB obtained in section 3.1.1 and section 3.1.2. We will compare the errors
on the system introduced by Dean et al. (2017):

A∗ =

1.01 0.01 0.00
0.01 1.01 0.01
0.00 0.01 1.01

 , B∗ = I3, Q = R = I3 (6.1)

we further set (wi)i≥1
i.i.d.∼ N (0, I) and choose actions (ui)i≥1

i.i.d.∼ N (0, I). The
probability of failure is δ = 0.1, regularizing parameter is set to λ = 1. We
set the initial upper bound for the system norm to ϑ = 10.

0 100 200 300 400 500
Time

10 2

10 1

100

101

Er
ro

r

Error analysis matrix A

True error A A

Martingale bound A A

Bayesian bound A A

(a) Error analysis for matrix A∗

0 100 200 300 400 500
Time

10 1

100

101

Er
ro

r

Error analysis matrix B

True error B B

Martingale bound B B

Bayesian bound B B

(b) Error analysis for matrix B∗

Figure 6.1: Data dependent bounds obtained from Bayesian setting are
slightly tighter than the one obtained from the theory of Self Normalizing
Processes.

73

6. Numerical experiments

As we have seen in fig. 6.1, data dependent upper bounds obtained from
Bayesian setting perform better. This trend is observed on all the conducted
experiments. Therefore in the upcoming experiments we will only focus on
confidence regions obtained from the Bayesian setting. Since we obtained
errors εA, εB in the Bayesian setting by finding the smallest ”box” which con-
tains ellipsoid region, using εA, εB we lose a lot of structure in the estimation.
On fig. 6.2 we see an example of how much structure we can lose. Since we
are trying to find a controller which stabilizes everything inside given confi-
dence region we conclude that we will always find faster a controller which
stabilizes everything inside given ellipsoid than if we would like to find a
controller which stabilizes everything inside the associated ”box” confidence
region.

2.25 2.50 2.75 3.00 3.25 3.50 3.75
Matrix A

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
at

rix
 B

Center
Box from A, B

Ellipsoidal region

Figure 6.2: By using box confidence region we lose a lot of structure com-
pared to ellipsoid confidence region.

On fig. 6.3 we present how much faster we find a stabilizing controller if we
use ellipsoid confidence region compared to the box confidence region. We
run the experiment on system given by eq. (6.1). To synthesize the controller
with ellipsoid confidence region we used SDP given by eq. (3.27) and to
synthesize the controller with box confidence region we used SDP given
by eq. (3.11). Both SDPs were obtained on the same way – both have an

74

6.2. Control before stabilization

equivalent formulation in SLS language, the only difference is which region
we try to stabilize, hence the comparison make sense. We see that by using
ellipsoid region we find a stabilizing controller around 3 times faster in this
case.

0 25 50 75 100 125 150 175 200
Number of steps

100

101

102

Trajectory norm history

Trajectory norm history
Found stabilizing controller

(a) Number of steps we need to find a
stabilizing controller using box

confidence interval

0 25 50 75 100 125 150 175 200
Number of steps

100

101

Trajectory norm history

Trajectory norm history
Found stabilizing controller

(b) Number of steps we need to find a
stabilizing controller using ellipsoid

confidence interval

Figure 6.3: Using ellipsoid confidence region around the estimates the algo-
rithm finds stabilizing controller a couple of times faster than by using box
confidence regions.

We further run the experiment on the same system but with different ran-
dom seeds. We tried 100 times, among them in 93 cases the stabilizing con-
troller was found before 500 steps for both settings – if we use ellipsoid or
box confidence region – and for them the statistics of number of steps which
we need to take to find a stabilizing controller is presented in table 6.1.

avg(#steps) std(#steps)

Box region Θ 191.42 28.31
Ellipsoid region Θ 87.40 20.99

Table 6.1: On average with ellipsoid confidence region we find stabilizing
controller 2 times faster for the system given by eq. (6.1).

6.2 Control before stabilization

As we have seen on fig. 6.3 if we choose actions ui
i.i.d.∼ N (0, σ2

u I) the norm
of the state can grow exponentially if ρ(A∗) > 1. This can be especially
problematic if matrix A∗ has an eigenvalue which is significantly larger than

75

6. Numerical experiments

1. To illustrate the blowup consider the system:

A∗ =

1.5 1.0 0.4 2.3
0.0 1.3 1.3 1.1
0.0 0.0 1.0 0.7
0.0 0.0 0.0 0.8

 , B∗ =

0.6 0.7 0.3
0.8 1.1 1.1
1.2 0.2 2.3
2.1 0.4 0.4

 , Q = I4, R = I3,

(6.2)

where noise follows (wi)i≥1
i.i.d.∼ N (0, σ2

w I). We will consider the case when we
try to synthesize a stabilizing controller with probability of failure δ = 0.1

and regularizing parameter λ = 1. We first choose actions (ui)i≥0
i.i.d.∼ N (0, I3).

As we can see on fig. 6.4 since we choose zero mean Gaussian actions the
norm of the state grows exponentially until we find a stabilizing controller
in step 31.

0 50 100 150 200 250 300 350 400
Number of steps

101

102

103

104

105

106

107

108

Trajectory norm history

Trajectory norm history
Found stabilizing controller

Figure 6.4: By choosing actions taken from zero mean Gaussian the state
norm grow exponentially until we find a stabilizing controller.

Since for some systems large states could be prohibitive, we can instead of
choosing zero mean Gaussian actions choose actions ui ∼ N (Kixi, σ2

u I) for
different controllers Ki.

76

6.2. Control before stabilization

0 20 40 60 80 100
Number of steps

101

102

Trajectory norm history

Trajectory norm history
Found stabilizing controller

(a) Ki as CEC

0 20 40 60 80 100
Number of steps

101

102

Trajectory norm history

Trajectory norm history
Found stabilizing controller

(b) Ki as MinMax controller

0 20 40 60 80 100
Number of steps

101

102

103

Trajectory norm history

Trajectory norm history
Found stabilizing controller

(c) Ki as RelaxedSDP controller

0 20 40 60 80 100
Number of steps

101

102

103

Trajectory norm history

Trajectory norm history
Found stabilizing controller

(d) Ki as DeadBeat controller

Figure 6.5: Using different controllers before we find a stabilizing controller
reduces the initial blowup. Since we do not choose zero mean actions we do
not have a theoretical guarantee that eXploration will eventually terminate,
however experiments show that using controller before stabilization does
not harm the time it take to finish eXploration phase.

Steps Max state norm Total cost

CEC 8.4± 1.9 3.9 · 102 ± 4.4 · 102 6.5 · 105 ± 1.6 · 106

MinMax 16± 6.9 1.4 · 104 ± 4.2 · 104 9.2 · 108 ± 3.8 · 109

RelaxedSdp 16± 14 6 · 102 ± 9.3 · 102 1.5 · 106 ± 3.1 · 106

DeadBeat 7.3± 0.66 2.8 · 104 ± 9.7 · 104 6.4 · 1010 ± 5.2 · 1011

Table 6.2: Performance of different controllers if we apply them on system
eq. (6.2) before we find a stabilizing controller.

Tables 6.2 and 6.3 show statistics of performances of different controllers
which we apply before guaranteed stabilization. We can see that the num-
ber of steps it takes to find a stabilizing controller for system (6.2) is smaller

77

6. Numerical experiments

compared to the system (6.1). The intuition behind this lies in the obser-
vation of Sarkar and Rakhlin (2018) who showed that the identification of
explosive modes of the system happens exponentially fast where the base of
the exponent is the mode of explosiveness. Since explosive modes 1.5 and
1.3 of system (6.2) are significantly larger than the explosive modes of system
(6.1), which are approximately 1.01 and 1.02, we expect faster identification
of unstable modes of system (6.2).

Steps Max state norm Total cost

CEC 42± 14 14± 52 1.5 · 104 ± 1.4 · 105

MinMax 40± 15 58± 1.3 · 102 6.3 · 104 ± 2.2 · 105

RelaxedSdp 41± 14 40± 85 5 · 104 ± 1.9 · 105

DeadBeat 14± 10 1.7 · 103 ± 1.1 · 104 3.7 · 108 ± 3.1 · 109

Table 6.3: Performance of different controllers if we apply them on system
eq. (6.1) before we find a stabilizing controller.

6.3 Stabilizing region

Using the Bayesian initial belief we obtain that the true system matrices
A∗, B∗ lie in the set Θ = {(A, B)|X>DsX � I, X> = (A B)− (As Bs)}. The
goal is then to find a controller K with property ρ(A + BK) < 1 for every
(A, B) ∈ Θ. This problem is in general non convex and we do not know
how to solve it efficiently. However, as we have seen in section 3.2, we can
formulate a convex SDP (c.f. eq. (3.31)) with a guarantee that the associated
controller will stabilize the underlying system. In this section we will try to
illustrate for how large ellipsoid region Θ the SDP (3.31) can synthesize a
controller which stabilizes every system in Θ.

For that we will move to the case when system matrices are one dimen-
sional and leverage the fact that in one dimension the spectral radius is
equal to the spectral norm. For every system (Â, B̂) ∈ [−3, 3]× [−3, 3] we
will search for the smallest matrix D = 1

r2 I for which SDP (3.31) can syn-
thesize the controller. In other words we search for the largest radius r
for which SDP (3.31) is feasible and returns a controller Kg(Â, B̂) with a
guarantee to stabilize every system (A, B) with (A − Â)2 + (B − B̂)2 ≤ r2.
On fig. 6.6 we plot for every system Â, B̂ the largest r with such property.
Note that r is trivially upper bounded by 1. To see that without loss of gen-
erality assume that for controller K, that stabilizes the largest ball around
(Â B̂), we have 0 ≤ Â + B̂K < 1. If r ≥ 1 than K stabilizes also the system
(A, B) = (Â + 1, B̂). But 1 ≤ A + BK.

Controller synthesized from SDP (3.31) has a guarantee to stabilize every

78

6.3. Stabilizing region

Matrix A

3 2 1 0 1 2 3

Matrix
 B

3
2

1
0

1
2

3

M
ax

im
al

 p
er

tu
rb

at
io

n

0.2

0.4

0.6

0.8

M
at

rix
 A

3

2

1

0

1

2

3

Matrix B3 2 1 0 1 2 3

Figure 6.6: Maximal ball radius around estimates for which we have a guar-
antee to stabilize.

system in ellipsoid region associated with matrix D. However it can happen
that in fact it stabilizes larger region. When the system matrices are one
dimensional we can use SDP (3.46) to check what is actually the largest ball
around the estimates which controller Kg(Â, B̂) stabilizes. As we see on the
fig. 6.7 the ball for which SDP (3.31) provides a guarantee that Kg(Â, B̂) will
stabilize it is in fact the largest ball that controller Kg(Â, B̂) stabilizes. We
can further use SDP (3.45) to search for the largest ball around estimates
which are stabilized by any controller. Again we see that when systems are
one dimensional the SDP (3.31) synthesize the controller which stabilizes
the largest possible region. Since we computed the difference only to the
accuracy 10−2 the plot obtained in fig. 6.7 is not identically zero.

Matrix A

3 2 1 0 1 2 3

Matrix
 B

3
2

1
0

1
2

3

Di
ffe

re
nc

e

0.008
0.006
0.004
0.002
0.000
0.002
0.004
0.006

Guaranteed performance vs. actual performance

M
at

rix
 A

3

2

1

0

1

2

3

Matrix B3 2 1 0 1 2 3

Guaranteed performance vs. actual performance

Figure 6.7: The area for which we have a guarantee that synthesized con-
troller stabilizes is the same as the maximal area which the synthesized
controller stabilizes.

We obtained that controller Kg(Â, B̂) is the same as the controller obtained

79

6. Numerical experiments

from SDP (3.45). Note that the fact, that we can efficiently compute the con-
troller which stabilizes the ball with the largest radius around given system,
crucially depends on the fact that system matrix A∗ is one dimensional and
its spectral radius is equal to its spectral norm. In higher dimension we can
not compute such controller efficiently and there also exist controllers which
stabilize larger ellipsoid than the one synthesized from SDP (3.31).

6.4 Comparison of CE and robust controller

As was argued in Simchowitz and Foster (2020) we also have a guarantee
that CEC stabilizes some region around the estimates. Simchowitz and
Foster (2020) use this fact to show that applying CEC the regret scales as
O(
√

d2
udxT). Since we only have upper bound but not lower bound on how

large the confidence region should be for robust (CE) controller to stabilize
the whole confidence region, we will try to illustrate the difference in the
size of the largest ball which is stabilized either by robust or CE controller.
First we will compare the maximal balls around the estimates they stabilize
in one dimension. To compute CEC we also need to set matrices Q and R.
We will compare robust controller with CEC, where we take Q = 1, R = 1,
Q = 1000, R = 1 and Q = 1, R = 1000 respectively.

Matrix A

3 2 1 0 1 2 3

Matrix
 B

3
2

1
0

1
2

3

Ra
di

us
 d

iff
er

en
ce

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

M
at

rix
 A

3

2

1

0

1

2

3

Matrix B3 2 1 0 1 2 3

Figure 6.8: To compute CEC we used Q = 1, R = 1. Robust controller
stabilizes larger ball around the estimates, however on some systems CEC
stabilizes almost the same area as the robust controller.

First note that the absolute size of matrices Q and R does not matter in
the computation of CE controller. Only relative size of matrices Q and R
changes the CEC. As we can see on fig. 6.9 if we increase the relative size of
state cost matrix Q compared to R CEC is starting to act as robust controller
on most of the systems, however if we further increase the size of Q the
difference between robust and CE controller is approximately the same as
in the case when Q = 1000 and R = 1. On the other hand by increasing the

80

6.4. Comparison of CE and robust controller

Matrix A

3 2 1 0 1 2 3

Matrix
 B

3
2

1
0

1
2

3

Ra
di

us
 d

iff
er

en
ce

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

M
at

rix
 A

3

2

1

0

1

2

3

Matrix B3 2 1 0 1 2 3

Figure 6.9: To compute CEC we used Q = 1000, R = 1. CEC stabilizes for
many systems almost the same ball as robust controller.

relative size of the action matrix R, the CEC stabilizes significantly smaller
region compared to the robust controller.

Matrix A

3 2 1 0 1 2 3

Matrix
 B

3
2

1
0

1
2

3

Ra
di

us
 d

iff
er

en
ce

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
at

rix
 A

3

2

1

0

1

2

3

Matrix B3 2 1 0 1 2 3

Figure 6.10: To compute CEC we used Q = 1, R = 1000. As we increase
the cost for actions CEC controller for some estimates stabilizes significantly
smaller region than robust controller.

In the following we will focus on the case Q = 1, R = 1 and will compare
the cost of robust and CE controller for diferent systems Â, B̂. For radius
r for which CE controller stabilizes everything inside Θr = {(A, B)|(A −
Â)2 + (B − B̂)2) ≤ r2} we will find Aw(r), Bw(r) on which CEC achieves
the largest infinite horizon cost JCE(r, Â, B̂) among all systems in Θr and
compute JCE(r, Â, B̂) using Aw(r), Bw(r). At the same time for every radius
r, for which SDP (3.31) stabilize every system inside Θr, denote JR(r, Â, B̂),
which represent the largest cost robust controller achieves on systems in
Θr. We selected 5 different systems uniformly at random (Â, B̂) ∈ [−3, 3]×
[−3, 3] and plotted their respective costs in fig. 6.11. We obtained that as
radius goes to zero, performance of robust and CE controller on the worst

81

6. Numerical experiments

system in r-ball neighborhood converges to the same - optimal cost. At the
same time we also see that robust controller has smaller infinite horizon
cost on the worst system compared to CE controller, which is not surprising
since SDP (3.31) optimizes this objective.

3 2 1 0 1 2 3
Matrix A

3

2

1

0

1

2

3

M
at

rix
 B

5 uniformly random from [3, 3] × [3, 3]
 chosen systems

0.0 0.2 0.4 0.6 0.8
Radius

100

101

102

103

104

In
fin

ite
 h

or
izo

n
co

st

System 1
Worst case performance CEC
Best robust performance

0.00 0.05 0.10 0.15 0.20 0.25
Radius

101

102

In
fin

ite
 h

or
izo

n
co

st

System 2
Worst case performance CEC
Best robust performance

0.0 0.2 0.4 0.6 0.8 1.0
Radius

100

101

102

In
fin

ite
 h

or
izo

n
co

st

System 3
Worst case performance CEC
Best robust performance

0.0 0.2 0.4 0.6 0.8 1.0
Radius

100

101

102

In
fin

ite
 h

or
izo

n
co

st

System 4
Worst case performance CEC
Best robust performance

0.0 0.2 0.4 0.6 0.8
Radius

100

101

102

In
fin

ite
 h

or
izo

n
co

st

System 5
Worst case performance CEC
Best robust performance

Figure 6.11: Comparison of robust and CE controller infinite horizon cost
performance on the worst system in r-ball neighborhood. We selected uni-
formly at random 5 systems and tested performance on them. Robust con-
troller stabilizes larger r-ball neighborhoods and achieves lower worst infi-
nite horizon cost.

82

6.4. Comparison of CE and robust controller

While fig. 6.11 shows the cost suffered by robust and CE controller on the
worst case system inside confidence ball, fig. 6.12 reveals their behavior on
all the systems inside the confidence ball. For the ball radius we took half of
the maximal radius of the ball for which CEC stabilizes every system inside
it. We then plot for every system inside this ball the difference between the
cost suffered by CEC and the best robust controller for this ball.

0.0 0.2 0.4 0.6
Matrix A

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
at

rix
 B

-0
.2

40
-0

.1
80

-0
.1

20

-0.060

0.000

0.060
0.120

System 1

-0.30
-0.24
-0.18
-0.12
-0.06
0.00
0.06
0.12
0.18
0.24

CE - Robust
1.25 1.30 1.35

Matrix A

0.44

0.42

0.40

0.38

0.36

0.34

0.32

0.30

M
at

rix
 B

-0.800

-0.400

-0.400
0.000

0.400

0.800
1.200

System 2

-1.20

-0.80

-0.40

0.00

0.40

0.80

1.20

1.60

CE - Robust

0.2 0.4 0.6 0.8 1.0
Matrix A

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

M
at

rix
 B -0

.1
20

-0
.0

80

-0
.0

40

0.
00

0 0.
04

0

0.
08

0
0.

12
0

System 3

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

CE - Robust

0.2 0.0 0.2 0.4 0.6
Matrix A

2.4

2.6

2.8

3.0

3.2

M
at

rix
 B -0

.0
45

-0
.0

30

-0
.0

15

0.
00

0 0.
01

5

0.
03

0
0.

04
5

System 4

-0.06

-0.04

-0.03

-0.01

0.00

0.01

0.03

0.04

0.06

CE - Robust

0.8 0.6 0.4 0.2
Matrix A

1.0

0.9

0.8

0.7

0.6

0.5

0.4

M
at

rix
 B

-0
.1

80

-0
.1

20-0.0600.000

0.060
0.120
0.180

System 5

-0.24

-0.18

-0.12

-0.06

0.00

0.06

0.12

0.18

0.24

CE - Robust

Figure 6.12: Difference between cost of CE and robust controller on the
systems inside the confidence region.

83

Chapter 7

Discussion and outlook

The main topic in the thesis addresses the question how to find a stabilizing
controller in a single trajectory with as little prior knowledge as possible.
While we introduced an algorithm with a guarantee that will find, with
high probability, a stabilizing controller in time depending only on system
parameters, many other questions arose.

Firstly, running the algorithm the norm of the state can grow exponentially
while we search for a stabilizing controller. Since this can be highly problem-
atic for certain applications we changed the action inputs to the algorithm,
in particular, instead of choosing zero mean Gaussian actions we choose
actions as ui ∼ N (Kixi, σ2

u I), where Ki is a controller computed from the
observed data. The question which arises is whether we can find a theo-
retical guarantee that for suitable nontrivial action selection we synthesize,
with high probability, a stabilizing controller in finite time. Further, can
we choose such actions that the cost suffered until we synthesize a stabiliz-
ing controller is not exponentially large? Or can we prove a lower bound
on at least how much cost do we need to suffer to find a stabilizing con-
troller? The answer to this question was already answered in the case when
unknown matrix A∗ is one dimensional and we know matrix B∗. Rantzer
(2018) showed that by choosing the right controller the norm of states can be
upper bounded in expectation as O

(1
s + 1

)
, where s is the number of taken

steps. From their techniques it also follows that by choosing the proposed
controller we find a stabilizing controller in finite time with high probability.

A minor step towards answering this questions in case when dx ≥ 2 is given
by theorem 5.1 which shows that in the setting when we know matrix B∗, if
we can find controllers Ki which bound the norm of states, then RLS estimate
of A∗ will be consistent and we will synthesize the controller in finite time.

The second question is based on the comparison of robust and CE controller.
As we can see in section 6.4 robust controller stabilizes larger region around

85

7. Discussion and outlook

the estimates and achieves smaller worst infinite horizon cost. Simchowitz
and Foster (2020) show that choosing CEC, when we have tight enough es-
timates, yields optimal Θ(

√
d2

udxT) regret. Can we obtain the same regret
with better other system parameters if we update optimistically robust con-
troller synthesized from SDP (3.31) and use it to control the system? Does
the performance of the robust compared to the CE controller change when
we move to higher dimensions?

Finally, the most interesting question is whether we can formulate and prove
finite termination of an algorithm which finds a stabilizing controller in
partially observed setting, namely when we do not directly observe states xi
but rather yi = C∗xi + vi, where C∗ is unknown matrix and vi unobserved
noise. A good starting point would be to assume C∗ is known or even
C∗ = I.

86

Appendix A

Supporting results

A.1 Elementary calculations

Lemma A.1 For u = −(R + B>∗ Pt+1B∗)−1B>∗ Pt+1A∗z the expression u>Ru +
(A∗z + B∗u)>Pt+1(A∗z + B∗u) equals to

z>
(

A>∗ Pt+1A∗ − A>∗ Pt+1B∗(R + B>∗ Pt+1B∗)−1B>∗ Pt+1A∗
)

z.

Proof Denote by Kt = −(R + B>∗ Pt+1B∗)−1B>∗ Pt+1A∗ and observe:

u>Ru + (A∗z + B∗u)>Pt+1(A∗z + B∗u)

=z>
(

K>t RKt + (A∗ + B∗Kt)
>Pt+1(A∗ + B∗Kt)

)
z.

We further compute:

K>t RKt + (A∗ + B∗Kt)
>Pt+1(A∗ + B∗Kt)

= A>∗ Pt+1A∗ + K>t (R + B>∗ Pt+1B∗)Kt + A>∗ Pt+1B∗Kt + K>t B>∗ Pt+1A∗
= A>∗ Pt+1A∗ − A>∗ Pt+1B∗(R + B>∗ Pt+1B∗)−1B>∗ Pt+1A∗. �

Lemma A.2 We have: Pt+1 − P∗ = (A∗ + B∗K∗)>(Pt − P∗)(A∗ + B∗Kt)

Proof Observe:

P∗ = Q + A>∗ P∗A∗ − A>∗ P∗B∗(R + B>∗ P∗B∗)−1B>∗ P∗A∗

= Q +
(

A∗ − B∗(R + B>∗ P∗B∗)−1B>∗ P∗A∗
)>

P∗A∗

= Q + (A∗ + B∗K∗)
> P∗A∗.

With the same idea we obtain: Pt+1 = Q + A>∗ Pt (A∗ + B∗Kt). Hence we
have:

Pt+1 − P∗ = (A∗ + B∗K∗)>(Pt − P∗)(A∗ + B∗Kt)− K>∗ B>∗ Pt(A∗ + B∗Kt)

+ (A∗ + B∗K∗)>P∗B∗Kt

87

A. Supporting results

To finish the proof we will show K>∗ B>∗ Pt(A∗+ B∗Kt) = (A∗+ B∗K∗)>P∗B∗Kt.
Observe:

(A∗ + B∗K∗)>P∗B∗Kt =
(

A>∗ P∗B∗ + K>∗ (R + B>∗ P∗B∗)− K>∗ R
)

Kt

= −K>∗ RKt.

The same idea shows K>∗ B>∗ Pt(A∗ + B∗Kt) = −K>∗ RKt, which concludes the
proof. �

Lemma A.3 The following is equivalent:(
A B

B> C

)
� 0 ⇐⇒

(
A −B
−B> C

)
� 0.

Proof By taking Schur complements we have:(
A B

B> C

)
� 0

⇐⇒ A− BC−1B> � 0

⇐⇒ A− (−B)C−1(−B>) � 0

⇐⇒
(

A −B
−B> C

)
� 0. �

A.2 Dual problems

Here we derive the dual problem of SDP (2.20) and SDP (3.31). We first
derive the dual problem of SDP (2.20). The Lagrangian for minimization
problem eq. (2.20) is given by:

L(Σ, P) =
〈(

Q 0
0 R

)
, Σ
〉
−
〈

P, Σxx − (A∗ B∗)Σ(A∗ B∗)> + σ2
w I
〉

,

where P ∈ Rdx×dx is positive semi-definite matrix. For such P define:

g(P) = inf
Σ�0

L(Σ, P).

Further define the finite region of g as F(g) = {P|g(P) > −∞}. Then the
dual problem is defined as:

max
P�0

g(P)

s.t. P ∈ F(g)

88

A.2. Dual problems

Next we compute explicit formulas of g and F(g).

g(P) = inf
Σ

〈(
Q 0
0 R

)
, Σ
〉
−
〈

P, Σxx − (A∗ B∗)Σ(A∗ B∗)> + σ2
w I
〉

=
〈

P, σ2
w I
〉
+ inf

Σ�0

〈(
Q 0
0 R

)
−
(

P 0
0 0

)
+ (A∗ B∗)>P(A∗ B∗), Σ

〉

=

〈

P, σ2
w I
〉

;

(
Q− P 0

0 R

)
+ (A∗ B∗)>P(A∗ B∗) � 0,

−∞; otherwise.

Hence the dual is given by:

max
P�0

σ2
w ‖P‖∗

s.t.
(

Q− P 0
0 R

)
+ (A∗ B∗)>P(A∗ B∗) � 0

(A.1)

It is interesting to note that the optimal solution P of the dual is equal to P∗
associated with Riccati equations given in theorem 2.2.

Now we will derive the dual problem of SDP (3.31). The Lagrangian for
SDP (3.31) is:

L(Σ, λ, P) =
〈(

Q 0
0 R

)
, Σ
〉
−
〈

P,
(

Σxx − (Â B̂)Σ(Â B̂)> − (λ + σ2
w)I (Â B̂)Σ

Σ(Â B̂)> λD− Σ

)〉
,

with P ∈ R(d+dx)×(d+dx) positive semi-definite matrix. Again for fixed P
define

g(P) = inf
Σ�0,λ≥0

L(Σ, λ, P) (A.2)

Further define finite region of P as F(g) = {P|g(P) > −∞}. The dual
problem of SDP (3.31) is then:

max
P�0

g(P)

s.t. P ∈ F(g).

We compute now function g and region F(g). To ease the notation denote
by θ = (Â B̂). With such a notation we have:

g(P) = inf
Σ�0,λ≥0

L(Σ, λ, P)

=

〈
P,
(

σ2
w I 0
0 0

)〉
+ inf

Σ�0

〈(
Q 0
0 R

)
, Σ
〉
−
〈

P,
(

Σxx − θΣθ> θΣ
Σθ> −Σ

)〉
+ inf

λ≥0
λ

〈
P,
(

I 0
0 −D

)〉
,

89

A. Supporting results

where we notice that we can split the infimum over Σ and λ. We first com-
pute infimum over Σ:

inf
Σ�0

〈(
Q 0
0 R

)
, Σ
〉
−
〈

P,
(

Σxx − θΣθ> θΣ
Σθ> −Σ

)〉
= inf

Σ�0

〈(
Q 0
0 R

)
, Σ
〉
−
〈

P,
(

Σxx 0
0 0

)〉
+

〈
P,
(

θ
−I

)
Σ
(

θ
−I

)>〉

= inf
Σ�0

〈(
Q 0
0 R

)
−
(

Pxx 0
0 0

)
+

(
θ
−I

)>
P
(

θ
−I

)
, Σ

〉

=

0;

(
Q 0
0 R

)
−
(

Pxx 0
0 0

)
+

(
θ

−I

)>
P

(
θ

−I

)
� 0,

−∞; otherwise.

And then infimum over λ:

inf
λ≥0

λ

〈
P,
(

I 0
0 −D

)〉
=

0;

〈
P,

(
I 0
0 −D

)〉
≥ 0,

−∞; otherwise.

Now we can rewrite eq. (A.2) to obtain the Dual of SDP (3.31):

max
P�0

〈
P,
(

σ2
w I 0
0 0

)〉
s.t.

〈
P,
(

I 0
0 −D

)〉
≥ 0(

Q 0
0 R

)
−
(

Pxx 0
0 0

)
+

(
(Â B̂)
−I

)>
P
(
(Â B̂)
−I

)
� 0

(A.3)

The Dual problem (A.3) is always feasible since P = 0 is a feasible solution.
However its optimal value is unbounded as long as the primal SDP (3.31) is
infeasible. When the primal becomes feasible, optimal value of SDP (A.3) is
finite and strong duality applies - optimal value of the dual is equal to the
optimal value of the primal problem. With very similar derivation as shown
in this section we obtain that the dual problem of the Dual given by eq. (A.3)
is the primal problem given by eq. (3.31).

A.3 Worst CE performing system

In this section we will derive Aw(r), Bw(r) which we defined in section 6.4.
Note that all the systems are one dimensional. In further computation de-

90

A.3. Worst CE performing system

note by K the CEC. From the definition it follows:

Aw(r), Bw(r) = argmin
A,B

(Q + K2R)X

s.t. X = (A + BK)2X + σ2
w

(A− Â)2 + (B− B̂)2 ≤ r2.

(A.4)

Next by elementary transformations we obtain that we can equivalently to
eq. (A.4) obtain Aw(r), Bw(r) from:

Aw(r), Bw(r) = argmin
A,B

(A + BK)2

s.t. (A− Â)2 + (B− B̂)2 = r2.
(A.5)

To solve eq. (A.5) we write Lagrangian:

L(A, B, λ) = (A + BK)2 − λ(r2 − (A− Â)2 + (B− B̂)2),

and solve a system of 3 equations with 3 unknowns:

∂L
∂A

= 0,
∂L
∂B

= 0,
∂L
∂λ

= 0. (A.6)

By solving eq. (A.6) we obtain:

(Aw(r), Bw(r)) = (Â± r√
(K2 + 1)

, B̂± Kr√
K2 + 1

),

where we choose sign + if Â + B̂K ≥ 0 and sign − otherwise. The corre-
sponding worst case CE cost is then:

(Q + K2R)
σ2

w

1−
(

Â + B̂K± r
√

K2 + 1
)2 .

91

Bibliography

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. (2011). Online Least Squares
Estimation with Self-Normalized Processes: An Application to Bandit
Problems. arXiv e-prints, page arXiv:1102.2670.

Abbasi-Yadkori, Y. and Szepesvari, C. (2011). Regret bounds for the adaptive
control of linear quadratic systems. In COLT.

Abeille, M. and Lazaric, A. (2020). Efficient optimistic exploration in linear-
quadratic regulators via lagrangian relaxation. In Proceedings of Machine
Learning and Systems 2020, pages 7388–7396.

Anderson, B. and Moore, J. (1979). Optimal filtering. Prentice-Hall informa-
tion and system sciences series. Prentice-Hall.

ApS, M. (2020). MOSEK Optimizer API for Python 9.2.4.

Bart, H., ter Horst, S., Ran, A. C., and Woerdeman, H. J., editors (2018). Op-
erator Theory, Analysis and the State Space Approach. Springer International
Publishing.

Boyd, S. (2009). EE363 linear dynamical systems. [Online; accessed 29-July-
2020].

Chen, X. and Hazan, E. (2020). Black-box control for linear dynamical sys-
tems. arXiv preprint arXiv:2007.06650.

Cohen, A., Hasidim, A., Koren, T., Lazic, N., Mansour, Y., and Talwar, K.
(2018). Online linear quadratic control. In Dy, J. and Krause, A., ed-
itors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 1029–1038,
Stockholmsmässan, Stockholm Sweden. PMLR.

Cohen, A., Hassidim, A., Koren, T., Lazic, N., Mansour, Y., and Tal-
war, K. (2018). Online Linear Quadratic Control. arXiv e-prints, page
arXiv:1806.07104.

93

Bibliography

Cohen, A., Koren, T., and Mansour, Y. (2019). Learning Linear-Quadratic
Regulators Efficiently with only

√
T Regret. arXiv e-prints, page

arXiv:1902.06223.

Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. (2017). On the Sam-
ple Complexity of the Linear Quadratic Regulator. arXiv e-prints, page
arXiv:1710.01688.

Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. (2018). Regret bounds
for robust adaptive control of the linear quadratic regulator. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R., editors, Advances in Neural Information Processing Systems 31, pages
4188–4197. Curran Associates, Inc.

Dowler, D. A. (2013). Bounding the Norm of Matrix Powers. Theses and
Dissertations. 3692.

Faradonbeh, M. K. S., Tewari, A., and Michailidis, G. (2018). Finite-time
adaptive stabilization of linear systems. IEEE Transactions on Automatic
Control, 64(8):3498–3505.

Gil’, M. (2014). A new identity for resolvents of matrices. Linear and Multi-
linear Algebra, 62(6):715–720.

Haddad, W. M., Chellaboina, V., and Nersesov, S. G. (2005). Thermodynamics:
A Dynamical Systems Approach. Princeton University Press.

Hsu, D., Kakade, S., and Zhang, T. (2012). A tail inequality for quadratic
forms of subgaussian random vectors. Electron. Commun. Probab., 17:6 pp.

Ibrahimi, M., Javanmard, A., and Roy, B. V. (2012). Efficient reinforcement
learning for high dimensional linear quadratic systems. In Pereira, F.,
Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 25, pages 2636–2644. Curran Asso-
ciates, Inc.

Kalman, R. E. (1960). A new approach to linear filtering and prediction
problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45.

Lale, S., Azizzadenesheli, K., Hassibi, B., and Anandkumar, A. (2020a).
Explore more and improve regret in linear quadratic regulators. arXiv
preprint arXiv:2007.12291.

Lale, S., Azizzadenesheli, K., Hassibi, B., and Anandkumar, A. (2020b). Log-
arithmic regret bound in partially observable linear dynamical systems.
arXiv preprint arXiv:2003.11227.

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic func-
tional by model selection. Ann. Statist., 28(5):1302–1338.

94

Bibliography

Luo, Z.-Q., Sturm, J. F., and Zhang, S. (2004). Multivariate nonnegative
quadratic mappings. SIAM Journal on Optimization, 14(4):1140–1162.

Mania, H., Tu, S., and Recht, B. (2019). Certainty equivalence is efficient
for linear quadratic control. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32, pages 10154–10164. Curran Associates,
Inc.

Nielsen, B. (2008). Singular vector autoregressions with deterministic terms:
Strong consistency and lag order determination.

Oymak, S. and Ozay, N. (2019). Non-asymptotic identification of lti systems
from a single trajectory. In 2019 American Control Conference (ACC), pages
5655–5661. IEEE.

Peña, V. H., Lai, T. L., and Shao, Q.-M. (2008). Self-normalized processes: Limit
theory and Statistical Applications. Springer Science & Business Media.

Phillips, P. C. and Magdalinos, T. (2013). Inconsistent var regression with
common explosive roots. Econometric Theory, 29(4):808–837.

Rantzer, A. (2018). Concentration bounds for single parameter adaptive
control. 2018 Annual American Control Conference (ACC), pages 1862–1866.

Ribeiro, F., Lopes, G., Maia, T., Ribeiro, H., Osório, P., Roriz, R., and Ferreira,
N. (2017). Motion control of mobile autonomous robots using non-linear
dynamical systems approach. In Garrido, P., Soares, F., and Moreira, A. P.,
editors, CONTROLO 2016, pages 409–421, Cham. Springer International
Publishing.

Sarkar, T. and Rakhlin, A. (2018). Near optimal finite time identification of
arbitrary linear dynamical systems. arXiv e-prints, page arXiv:1812.01251.

Sarkar, T., Rakhlin, A., and Dahleh, M. A. (2019). Nonparametric finite time
lti system identification.

Shirani Faradonbeh, M. K., Tewari, A., and Michailidis, G. (2018). Finite
time identification in unstable linear systems. Automatica, 96:342 – 353.

Simchowitz, M. (2020). Making non-stochastic control (almost) as easy as
stochastic. arXiv preprint arXiv:2006.05910.

Simchowitz, M., Boczar, R., and Recht, B. (2019). Learning linear dynami-
cal systems with semi-parametric least squares. In Conference on Learning
Theory, pages 2714–2802.

Simchowitz, M. and Foster, D. J. (2020). Naive exploration is optimal for
online lqr. arXiv preprint arXiv:2001.09576.

Simchowitz, M., Singh, K., and Hazan, E. (2020). Improper Learning for
Non-Stochastic Control. arXiv e-prints, page arXiv:2001.09254.

95

Bibliography

Singh, T. (2010). Optimal reference shaping for dynamical systems: theory and
applications. CRC Press, Boca Raton.

Stoorvogel, A. A. (1992). The H∞ control problem: a state space approach.
Prentice-Hall, New York.

Tornambè, A., Conte, G., and Perdon, A. (1998). Theory and Practice of Control
and Systems: Proceedings of the 6th IEEE Mediterranean Conference, Alghero,
Sardinia, Italy, 9-11 June 1998. World Scientific.

Trentelman, H., Stoorvogel, A., and Hautus, M. (2001). Control Theory for Lin-
ear Systems. Communications and Control Engineering. Springer London.

Umenberger, J., Ferizbegovic, M., Schön, T. B., and Hjalmarsson, H. k. (2019).
Robust exploration in linear quadratic reinforcement learning. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems 32,
pages 15336–15346. Curran Associates, Inc.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random
matrices. arXiv e-prints, page arXiv:1011.3027.

Vershynin, R. (2018). High-Dimensional Probability: An Introduction with Ap-
plications in Data Science. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press.

Wang, Y.-S., Matni, N., and Doyle, J. C. (2019). A system-level approach to
controller synthesis. IEEE Transactions on Automatic Control, 64(10):4079–
4093.

Zhou, K., Doyle, J. C., and Glover, K. (1996). Robust and Optimal Control.
Prentice-Hall, Inc., USA.

96

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Problem setting
	Related Work
	Structure of the thesis

	Preliminaries
	Benchmark class
	Value function
	Infinite horizon
	Cost comparison

	System Level Synthesis
	LQR in the language of System Level Synthesis
	H infinity norm constraint to semi-definite constraint

	Tools from Probability and Linear Algebra
	Probabilistic bounds
	Results from Linear Algebra

	Linear system identification
	Optimal infinite horizon policy via SDP

	Find stabilizing controller
	Data driven estimation error
	Bayesian view
	Self Normalizing Processes

	Robust control synthesis
	Robust controller from SLS
	Robust controller from SDP

	But they are the same
	Minimize spectral norm of closed loop system
	Feasibility conditions
	eXploration termination

	eXploration as initialization
	Initialization of OSLO
	Strong stability parameters from robust SDP
	Adjusted Warm Up

	Initialization of CEC

	Improved eXploration strategies
	Inconsistency of OLS in case dx>1
	Convergence in the constrained case

	Numerical experiments
	Comparison of error bounds
	Control before stabilization
	Stabilizing region
	Comparison of CE and robust controller

	Discussion and outlook
	Supporting results
	Elementary calculations
	Dual problems
	Worst CE performing system

	Bibliography

