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Abstract

We present a novel method for inferring ground-truth signal from multiple degraded
signals, affected by different amounts of sensor “exposure”. The algorithm learns
a multiplicative degradation effect by performing iterative corrections of two
signals solely from the ratio between them. The degradation function d should
be continuous, satisfy monotonicity, and d(0) = 1. We use smoothed monotonic
regression method, where we easily incorporate the aforementioned criteria to
the fitting part. We include theoretical analysis and prove convergence to the
ground-truth signal for the noiseless measurement model. Lastly, we present an
approach to fuse the noisy corrected signals using Gaussian processes. We use
sparse Gaussian processes that can be utilized for a large number of measurements
together with a specialized kernel that enables the estimation of noise values of all
sensors. The data fusion framework naturally handles data gaps and provides a
simple and powerful method for observing the signal trends on multiple timescales
(long-term and short-term signal properties). The viability of correction method is
evaluated on a synthetic dataset with known ground-truth signal.

1 Introduction

The idea of the paper is inspired by the problem of radiometer degradation correction arising in the
measurement process of total solar irradiance (TSI), such as in Variability of Solar Irradiance and
Gravity Oscillations (VIRGO) experiment on Solar and Heliospheric Observatory (SOHO) spacecraft.

The aim is to reconstruct the ground-truth signal from two time series of measurements, which are
produced by two identical sensors that have different sampling rates and are thus subjected to different
amounts of exposure to radiation. Let’s call the sensor with higher and lower sampling rate the main
and the back-up sensor, respectively, following the convention of Anklin et al. (1998).

The exposure causes the sensors to degrade, i.e. their sensitivity decreases. Since the two sensors are
identically built, the degradation affects them at the same rate, but both attain the same amount of
degradation at different times due to different amount of exposure. Furthermore, measurements are
affected by a random additive noise, which we assumed to be Gaussian.

The goal of this paper is to devise a general and unified method to conduct a posteriori degradation
correction, and to combine information from two, or even multiple, noisy, corrected, signals into a
reliable estimate of the ground-truth.

1.1 Related Work

Several methods have been proposed for degradation correction of radiometers (Claus Fröhlich, 2014;
Fröhlich, 2003; Anklin et al., 1998), however these only address radiometers and not sensors in general
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and incorporate many modeling assumptions. Furthermore, a wide variety of data-fusion techniques
are available and well understood, and can be found in an extensive survey by Castanedo (2013).
Our data-fusion method explores the capabilities of Gaussian processes, proposed by Rasmussen and
Williams (2005). The state-of-the-art method applied for data fusion of TSI time series is proposed
by de Wit et al. (2017), and utilizes a data-driven multi-scale maximum likelihood method. Many
domain specific methods often suffer from preconceived modeling bias and thus direct our work to
develop a more general – data-driven – method.

The rest of this paper is organized as follows. Section 2 describes the methods of degradation
modeling and proposes two correction methods. Section 3 gives a theoretical justification for the
proposed correction methods and establishes their convergence. In section 4 methods for Bayesian
data fusion are presented and described. Finally, in section 5 proposed methods are evaluated on a
synthetic dataset.

1.2 Notation

Throughout the paper, continuous and discrete time signals are differentiated: a parentheses nota-
tion denotes a continuous signal, whereas a square bracket notation denotes a discrete time series.
Continuous-time notation is used in development of the theory, whereas discrete-time in the descrip-
tion of the algorithms.

The signal from the main sensor is denoted as a and from the back-up sensor as b. We assume that
the main sensor is at any point in time except at the very beginning subjected to more exposure than
the back-up sensor. The indexed set Ta = {ta1 , . . . , tana

} contains all sampling times of the sensor a,
where na denotes the number of measurements, and (a[k])k∈[na]

the corresponding time series of
measurements. Similarly, we have for sensor b. We denote the ground-truth signal as s.

2 Degradation Modeling and Correction

Degradation is modeled as a multiplicative effect on the sensitivity of both sensors and is described
by the degradation function d(·). It is a function of what we call the exposure or exposure “time”
e. It takes the value of 1 at time 0, i.e. d(0) = 1, and is assumed to be a monotonically decreasing,
continuous function. The first assumption implies that instruments are not degraded at time t = 0,
and the second corresponds to the fact that sensor performance does not improve with exposure
to radiation. As it turns out, the first assumption is of paramount importance in the modeling of
degradation, not only being intuitively true, but providing a necessity for degradation correction
as we show in section 3. The second assumption improves interpretability and robustness of the
proposed method. The information on exposure of each sensor is supplied by the expert conducting
the correction, here we use an estimate of cumulative sum of measured values. We denote the
exposure functions for the two sensors by ea(·) and eb(·).
Noiseless measurement model is defined in eq. (1) and is used for the development of theory of
degradation correction.

a(t) = s(t) · d(ea(t)),
b(t) = s(t) · d(eb(t)).

(1)

In order to get a realistic model, which accounts for the noisy nature of measurements, we introduce
normally distributed additive noise with zero mean and a constant sensor-dependent variance, σ2

a
and σ2

b . We denote by εa and εb white noise signals (zero mean and independent in time) that are
independent of each other. This yields noisy measurement model defined in eq. (2).

a(t) = s(t) · d(ea(t)) + εa(t), εa(t) ∼ N (0, σ2
a),

b(t) = s(t) · d(eb(t)) + εb(t), εb(t) ∼ N (0, σ2
b ).

(2)

Note that we have ea(0) = eb(0) = 0.

2.1 Degradation Modeling

The degradation function is determined solely from the ratio of signals r(t) = a(t)
b(t) or more precisely

from its discrete time counterpart (r[k] = a[k]
b[k] )k∈nm

, where tk ∈ Tm = {tm1 , . . . , tmnm
} = Ta ∩ Tb.
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Thus, the ratio is computed only at discrete times at which both sensors took a measurement.
However, our method could straightforwardly be extended to the case when there are no simultaneous
measurements by using interpolation methods.

Next, we propose different modeling methods for learning the degradation function. This can be
formulated as a univariate regression problem, where we assume that there exists a function f(·,θ)
parametrized by θ, which describes the relation between a predictor variable x and a response variable
y, taking the form of

y = f(x,θ) + ε, (3)

where ε represents random noise with zero mean.

2.1.1 Exponential families

Many physical phenomena can be described by the family of exponential functions, because they
arise naturally as the solutions to the differential equations.

Firstly, we propose a simple exponential function with parameters θ = [θ1, θ2]
T, where θ1 > 0 is the

exponential decay and θ2 is a scaling parameter, taking the form

f(x,θ) = 1− eθ1·θ2 + e−θ1·(x−θ2). (EXP)

Secondly, we propose an extension to EXP by introducing an additional linear dependency term,
taking the form

f(x,θ) = 1− eθ1·θ2 + e−θ1·(x−θ2) + θ3 · x. (EXPLIN)

The latter model is adopted from the work of Anklin et al. (1998). Note that both models satisfy the
condition f(0,θ) = 1 regardless of the values of θ.

2.1.2 Monotonic Regression and Smoothed Monotonic Regression

One of the main modeling challenges is the robustness of the proposed correction method. By
assumption, degradation function has to be a monotonically decreasing function and thus monotonic
regression is a natural choice for its modeling.

Monotonic or isotonic regression requires predictor values to be in a strictly increasing order
x1 < x2 < . . . < xn. Its solution is a stepwise interpolating function determined by n points
θ = [θ1, . . . , θn]

T in monotonically decreasing order, which are obtained by solving the following
optimization problem with f(xi,θ) = θi, ∀ i ∈ [n], (Sysoev and Burdakov, 2019)

min
θ

n∑
i=1

(f(xi,θ)− yi)2 = min
θ

n∑
i=1

(θi − yi)2

s. t. θi ≥ θi+1 for i ∈ {1, . . . , n− 1}.
(ISOTONIC)

This quadratic optimization problem provides a simple and powerful framework for enforcing
additional constraints, such as f(0,θ) = 1 or convexity/concavity, which can be added to ISOTONIC
as

θ1 = 1 to ensure f(0,θ) = 1,

θi+1 − 2 · θi + θi−1 ≥ 0 for i ∈ {2, . . . , n− 1} to ensure Convexity, f ′′(xi) ≥ 0.
(4)

The practical issue with monotonic regression is that it resembles a discontinuous step function while
we expect the function to be continuous and smooth. In this regard, Sysoev and Burdakov (2019)
propose a modification of ISOTONIC by penalizing the difference between adjacent fitted response
values, θi and θi+1, by using an L2 regularization term. This yields a smoothed monotonic regression
problem formulated as

min
θ

n∑
i=1

(θi − yi)2 +
n−1∑
i=1

λi · (θi+1 − θi)2

s. t. θi ≥ θi+1 for i ∈ {1, . . . , n− 1},

(SMOOTHMONOTONIC)
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where λi for i ∈ [n− 1] are selected regularization parameters. Note that similarly to ISOTONIC we
can introduce additional constraints, such as (4). We choose λ1 = . . . = λn−1 = 1. The difference
in naming models, isotonic vs. monotonic, is introduced only for the purpose of clarity.

The stability of quadratic optimization problem SMOOTHMONOTONIC is guaranteed by first run-
ning ISOTONIC, then uniformly sampling the obtained function f(·,θ) at X = {xr1, . . . , xrm}, where
n� m, and lastly running SMOOTHMONOTONIC with D′ = {(xri , yri )}mi=1. Finally f is obtained
as a linear interpolation between each xri and xri+1.

2.2 Degradation Iterative Correction

The process described in this section yields degradation-corrected versions of signals, denoted by ac
and bc. Here the noiseless measurement model, defined by eq. (1), is used. We discuss the rationale
for not using eq. (2) later. Note that neither the ground-truth signal s nor the degradation function d(·)
is known. We present two methods with which s and d(·) can be approximately extracted just from
time series (a[k])k∈[nm] and (b[k])k∈[nm]. Method given by eq. (CORRECTONE) is described here,
whereas method described with eq. (CORRECTBOTH) is analyzed in appendix A.1 for the sake of
brevity. In order to unambiguously show the computational steps on the given time series, we present
these methods along with corresponding algorithms 1 and 2.

Method CORRECTONE performs iterative corrections of both signals, formulated as follows:

rn(ea(t)) =
a0(t)

bn(t)
an+1(t) =

a0(t)

rn(ea(t))
bn+1(t) =

b0(t)

rn(eb(t))
for n = 0, 1, . . .

(CORRECTONE)

where a0(t) = a(t) = s(t) · d(ea(t)) and b0(t) = b(t) = s(t) · d(eb(t)) holds.

Both algorithms return the best estimates of s for each instrument for tk ∈ Tm and d(·). In section 3
we show that indeed, dc(·) −→ d(·), ac(·) −→ s(·) and bc(·) −→ s(·) holds. After obtaining dc(·) both
time series (a[k])k∈[na]

, (b[k])k∈[nb]
can be corrected as

ac(t) =
a(t)

dc(ea(t))
and ac[k] =

a[k]

dc(ea[k])
for k ∈ [na],

bc(t) =
b(t)

dc(eb(t))
and bc[k] =

b[k]

dc(eb[k])
for k ∈ [nb].

(CORRECTION)

In CORRECTONE at each iteration the ratio is computed between initial signal a and corrected
b, therefore the ratio is an approximation of the degradation function, and, in order to satisfy the
modeling assumptions, robustness is enforced by fitting a function from the family of functions
proposed in subsection 2.1. Empirically, the SMOOTHMONOTONIC has proven to be the most robust
and realistic among all proposed.

Algorithm 1 CORRECTONE((a[k])k∈[nm] , (b[k])k∈[nm] , (ea[k])k∈[nm] , (eb[k])k∈[nm])

1: ac ← a; bc ← b . Initial estimate of corrected signals
2: while not converged do . E.g. ‖ai+1 − ai‖2 / ‖ai‖2 + ‖bi+1 − bi‖2 / ‖bi‖2 > ε

3: r ← a
bc

. Divide signals a and bc pointwise, i.e. r[k] = a[k]
bc[k]
∀ k ∈ [nm]

4: f(·)← FITCURVETO((ea[k])k∈[nm] , (r[k])k∈[nm]) . Learn mapping f : ea 7→ f(ea)

5: ac ← a
f(ea)

. Correction update of signal a
6: bc ← b

f(eb)
. Correction update of signal b

7: end while
8: dc(·)← f(·) . Final estimate of degradation function d(·)
9: return (ac[k])k∈[nm] , (bc[k])k∈[nm] , dc(·) . Return corrected signals and degradation function

3 Convergence Theorems

This section provides some theoretical guarantees for the convergence of our methods for the
noiseless measurement model (1). We show this first for simple exposure functions ea(t) = t and
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eb(t) =
t
2 , and then generalize to arbitrary exposure functions. Here we present the result only for

CORRECTONE. The results and analysis for CORRECTBOTH follow similar lines and hence are
deferred to the appendix, subsection A.2.
Proposition 1 (CORRECTONE for ea(t) = t and eb(t) = t

2 ). Let a0(t) = s(t) · d(t) and b0(t) =
s(t) ·d( t2 ) for t ≥ 0, where s(t) > 0 is the ground-truth signal and d : R≥0 → [0, 1] is a continuous
degradation function with d(0) = 1. If we run algorithm for n = 0, 1, . . . :

rn(t) =
a0(t)

bn(t)
, an+1(t) =

a0(t)

rn(t)
, bn+1(t) =

b0(t)

rn(
t
2 )
,

then we have ∀ t ≥ 0 : limn→∞ an(t) = limn→∞ bn(t) = s(t) and limn→∞ rn(t) = d(t).

Proof. Let us fix an arbitrary t > 0. Since we have r0(t) =
d(t)
d( t

2 )
by induction follows:

rn(t) =
a0(t)

bn(t)
=

a0(t)
b0(t)

rn−1(
t
2 )

=
a0(t)

b0(t)
· rn−1

(
t

2

)
=
a0(t)

b0(t)
·
a0(

t
2 )

b0(
t
2 )
· rn−2

(
t

22

)

= . . . =

n−1∏
i=0

a0(
t
2i )

b0(
t
2i )
· r0
(
t

2n

)
=

n∏
i=0

d( t2i )

d( t
2i+1 )

=
d(t)

d( t
2n+1 )

.

Calculating bn(t) yields

bn(t) =
b0(t)

rn−1(
t
2 )

=
s(t) · d( t2 )

d( t
2 )

d( t

2n+1 )

= s(t) · d
(

t

2n+1

)
and similarly for an(t), we have

an(t) = s(t) · d
(
t

2n

)
.

By taking the limit n −→∞, we get

lim
n→∞

bn(t) = lim
n→∞

s(t) · d
(

t

2n+1

)
= s(t) · d

(
t

limn→∞ 2n+1

)
= s(t) · d(0) = s(t),

from where it immediately follows limn→∞ an(t) = s(t). Moreover, the ratio rn(t) converges to
d(t), which follows from continuity of d as

lim
n→∞

rn(t) = lim
n→∞

d(t)

d( t
2n+1 )

=
d(t)

limn→∞ d( t
2n+1 )

=
d(t)

d( t
limn→∞ 2n+1 )

=
d(t)

d(0)
= d(t).

Next, we will generalize the obtained result to an arbitrary exposure function by first stating a
straightforward corollary, the proof of which immediately follows from the proposition 1.
Corollary 1 (CORRECTONE for ea(t) = t and eb(t) = t

k , k > 1). Let a0(t) = s(t) · d(t) and
b0(t) = s(t) · d( tk ) for t ≥ 0, where s(t) > 0 is the ground-truth signal, d : R≥0 → [0, 1] is a
continuous degradation function with d(0) = 1 and k > 1 is an arbitrary sampling rate parameter.
If we run algorithm for n = 0, 1, . . . :

rn(t) =
a0(t)

bn(t)
, an+1(t) =

a0(t)

rn(t)
, bn+1(t) =

b0(t)

rn(
t
k )
,

then we have ∀ t ≥ 0 : limn→∞ an(t) = limn→∞ bn(t) = s(t) and limn→∞ rn(t) = d(t).
Proposition 2 (CORRECTONE for ea(t) = t and eb(t) = e(t), e(t) < t). Let a0(t) = s(t) · d(t)
and b0(t) = s(t) · d(e(t)) for t ≥ 0, where s(t) > 0 is the ground-truth signal, d : R≥0 → [0, 1] is
a continuous degradation function with d(0) = 1 and e(t) is the exposure function of signal b, for
which we have e(0) = 0 and e(t) < t for all t > 0. If we run algorithm for n = 0, 1, . . . :

rn(t) =
a0(t)

bn(t)
, an+1(t) =

a0(t)

rn(t)
, bn+1(t) =

b0(t)

rn(e(t))
,

then we have ∀ t ≥ 0 : limn→∞ an(t) = limn→∞ bn(t) = s(t) and limn→∞ rn(t) = d(t).
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Proof. Let us fix an arbitrary t > 0 and define en(t) = (e ◦ e ◦ · · · ◦ e)︸ ︷︷ ︸
n times

(t). Since r0(t) =
d(t)
d(e(t)) we

have by induction:

rn(t) =
a0(t)

bn(t)
=

a0(t)
b0(t)

rn−1(e(t))

=
a0(t)

b0(t)
· rn−1(e(t)) =

a0(t)

b0(t)
· a0(e(t))
b0(e(t))

· rn−2(e(e(t)))

= . . . =

n−1∏
i=0

a0(e
i(t))

b0(ei(t))
· r0(en(t)) =

n∏
i=0

d(ei(t))

d(ei+1(t))
=

d(t)

d(en+1(t))
.

Calculating bn(t) yields

bn(t) =
b0(t)

rn−1(e(t))
=
s(t) · d(e(t))

d(e(t))
d(en+1(t))

= s(t) · d(en+1(t))

and similarly for an(t), we have
an(t) = s(t) · d(en(t)).

By the same reasoning as in proposition 4, we get limn→∞ d(en+1(t)) = 0 and thus by taking the
limit n −→∞ on bn(t) we get

lim
n→∞

bn(t) = lim
n→∞

s(t) · d
(
en+1(t)

)
= s(t) · d (0) = s(t),

from where it immediately follows limn→∞ an(t) = s(t). Moreover, the ratio rn(t) converges to
d(t), which follows from continuity of d as

lim
n→∞

rn(t) = lim
n→∞

d(t)

d(en+1(t))
=

d(t)

limn→∞ d(en+1(t))
=
d(t)

d(0)
= d(t).

Theorem 1. Let a0(t) = s(t) · d(ea(t)) and b0(t) = s(t) · d(eb(t)) for t ≥ 0, where s(t) > 0 is
the ground-truth signal, d : R≥0 → [0, 1] is a continuous degradation function with d(0) = 1 and
ea(t), eb(t) : [0,∞)→ [0,∞) are the continuous exposure function of signal a and b respectively.
Let us further assume ea(0) = eb(0) = 0, eb(t) < ea(t) for all t > 0 and that there exist function
e−1a : [0,∞)→ [0,∞). If we run algorithm for n = 0, 1, . . . :

rn(t) =
a0(t)

bn(t)
, an+1(t) =

a0(t)

rn(t)
, bn+1(t) =

b0(t)

rn((e
−1
a ◦ eb)(t))

,

then we have ∀ t ≥ 0 : limn→∞ an(t) = limn→∞ bn(t) = s(t).

Proof. Let h(t) = d(ea(t)). Then we have that d(eb(t)) = h(e−1a ◦eb)(t). If we denote e = e−1a ◦eb,
then the proposed algorithm transforms to:

rn(t) =
a0(t)

bn(t)
, an+1(t) =

a0(t)

rn(t)
, bn+1(t) =

b0(t)

rn(e(t))
,

with the initial setting: a0(t) = s(t) · h(t) and b0(t) = s(t) · h(e(t)). Since eb(t) < ea(t) holds,
e(t) < t holds as well, and since ea(0) = eb(0) = 0 holds, e(0) = 0 and h(0) = d(ea(0)) = d(0) =
1 holds as well. Since the assumptions from proposition 2 are satisfied, we are done.

We have established that CORRECTONE in the limit recovers the ground-truth signal and the degrada-
tion function. The following remark describes the rate of this convergence.
Remark 1 (Rate of convergence). Both CORRECTONE and CORRECTBOTH, in case when ea(t) = t
and eb(t) = t

k holds, converge in O(log t
δ ) = O(log t) up to any fixed precision δ > 0. This trivially

follows from t
kn+1 = δ.

We examined how to extend our analysis from noiseless to noisy measurement model. Since the
noise is assumed to be additive and Gaussian, and the expectation of a reciprocal Gaussian random
variable does not exist, we were not able to show above claims for the noisy measurement model.
However, empirical results suggest that it can be generalized to the noisy case. We suspect this might
be due to noise reduction in FITCURVETO procedure. Furthermore, the assumption on d(0) = 1 was
proven to be important by empirical analysis.
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4 Data Fusion

Here we suppose that signals have been corrected for degradation and are thus given by two time series
of measurements of the ground-truth signal s(t), (ac[k])k∈[na]

and (bc[k])k∈[nb]
. Measurements are

obtained through a noisy measurement process, defined by eq. (5) (cf. eq. (2)2), where εa and εb are
white noise signals and are independent of each other.

ac(t) = s(t) + εa(t), εa(t) ∼ N (0, σ2
a),

bc(t) = s(t) + εb(t), εb(t) ∼ N (0, σ2
b ).

(5)

We would like to utilize the information embedded in the observations (ac[k])k∈[na]
and (bc[k])k∈[nb]

to obtain posterior belief about the signal s.

The underlying process of s is assumed to be Brownian motion. Kalman filter proposed by Kalman
(1960) provides a powerful and efficient estimation method. However, it is limited to discrete-time
process model. Since the process model of s is random and not known, we would also like to
incorporate time differences between two consecutive measurements. Gaussian processes provide a
powerful framework for this problem. From now on we assume that s is a Gaussian process with
zero mean and a covariance function k(·, ·), specified in eq. (6).

s(t) ∼ GP (0, k(t, t′)) (6)
The zero mean is assumed here since we either do not have or do not want to incorporate any prior
knowledge about mean function µ, thus it is common to consequently set it to 0, i.e. µ(x) ≡ 0. The
covariance or the kernel function parameters, denoted by θ, are selected by maximizing log-marginal
likelihood.

4.1 Gaussian Processes

Now, before proceeding, the reader should recall the fundamentals of Gaussian processes (GP),
which are in detail described by Rasmussen and Williams (2005). In what follows we propose
an advanced application of GPs. Let us denote the set of observations of Gaussian Process s by
D = {(xi, yi)}ni=1 = (x,y), where for each i we know which sensor produced the observation.
We generalize the formulation of noise component σ2I of the covariance matrix to incorporate
observations from arbitrarily many different measurement sensor, each with its intrinsic variance of
noise. We replace it with diag(σ2), where σ = [σ1, . . . , σn]

T such that

σ2
i =


σ2
a if measurement i came from sensor a,
σ2
b if measurement i came from sensor b,
σ2
c if measurement i came from sensor c,

...

Since the analysis when differentiating between measuring instruments is similar, but its notation is
more tedious, we use simpler notation which assumes that all observations are produced by a single
sensor.

The main limitation of GPs is that given n observations, we need to compute the inverse of a
n× n matrix. Time complexity of such operation is O(n3), which is not scalable, especially when
computational resources are limited. Therefore, in the case when we have millions or even billions of
data points a rather cumbersome downsampling has to be performed. However, we would still like to
use the idea of Gaussian processes, so we turn to sparse Gaussian processes (SGP), a much more
scalable approach.

To tackle the problem with scalability, a lower bound for log p(y|x) can be constructed by ap-
proximating the exact Gaussian process with its sparse counterpart. Bauer et al. (2016) prove the
following:

log p(y|x) ≥ −1

2
yT (Qθ + σ2I)−1y − 1

2
log |Qθ + σ2I| − n

2
log(2π)− 1

2σ2
tr(kθ(x,x)−Qθ),

2In fact, since each measurement is corrected by the multiplication of the inverse value of the degradation,
the variance of the initial noise changes with degradation, e.g. for signal a to σa(t) = σa

dc(ea(t))2
. However, our

data-fusion framework can easily be extended for such case when designing the diag(σ2(t)).
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where vector u is a vector of m ≤ n inducing points (pseudo-observations) and Qθ = kθ(x,u) ·
kθ(u,u)

−1 · kθ(u,x) holds. Moreover, Bauer et al. (2016) showed that right-hand side can be
computed inO(nm2), which form� n becomes much more tractable. The idea then is to maximize
the lower-bound with respect to parameters θ and u and make statements about posterior distribution
of f based on the optimal parameters.

Burt et al. (2019) showed that if we use RBF kernel, m needs to be of order log n in order for
approximation error to go to 0, whereas in the case of Matern kernel with paramter k + 1/2, m
needs to be of order n1/(2k+1) that the approximation error tends towards 0. Empirical observations
showed that if the number of inducing points is small (in our case a couple of hundreds) then the
model is not capable to capture fast fluctuations and instead finds some global trends. With increasing
number of inducing points the model can also capture fast fluctuations. Moreover, by increasing m,
Gaussian processes do not overfit the dataset (do not show any additional small scale behavior) if fast
fluctuations do not exist. Therefore, the data-fusion framework with SGPs enables us to observe the
signal on multiple timescales, i.e. observing long-term and short-term signal properties.

5 Results

In practice both correction methods CORRECTONE and CORRECTBOTH perform well and converge.
However, we observe that the former has a slightly faster convergence and thus we use it in all
experiments. In all experiments we use SMOOTHMONOTONIC model, however EXP and EXPLIN
yield similar results.

We first evaluate proposed methods on a synthetic dataset, where the ground-truth signal s is known
and is generated by simulating a Brownian motion of length n, and signals a and b are the sub-sampled
versions of s with added degradation effect. Figure 1 shows the ground-truth signal s, degraded
signals a and b (left), and signal obtained after running the iterative correction algorithm. It clearly
shows that corrected signals converge to the ground-truth signal.
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(a) Raw signals
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(b) Corrected signals

Figure 1: Raw (left) and corrected (right) noise-free synthetic signals.

Next, we consider the general case with additive white noise present. These signals are shown on the
left side of fig. 2, whereas on the right side the initial ratio between signals a and b is visualized. The
ratio is clearly not monotonically decreasing. However, we argue that all information for degradation
correction and retrieval of s is embedded in it. Figure 3 shows that after performing corrections both
signals effectively converge to the ground-truth signal, i.e. the means of noisy signals converge to
s. Moreover, the ratio of corrected signals converges to a constant unit function. The green line
represents degradation of signal a, which is indeed a monotonically decreasing function.

Although corrected signals are centered around the ground-truth signal, the correction has amplified
the noise, with the amplification being greater as t increases. This effect was expected, since
correction consists of divisions by a value smaller than 1.

We apply the proposed data-fusion method based on SGPs on the corrected signals and visualize the
output signals. The bold line represents the predicted mean and the light area the 95% confidence
interval. In our experiments we use the Matern kernel for the covariance function with ν = 1

2 ,

k(t, t′) = σ2 · e−
|t−t′|

l . In fig. 4 the output signal together with the data points obtained after

8



0.0 0.2 0.4 0.6 0.8 1.0
t

2

4

6

8

10

12

14

16

18

x(
t)

A_raw
B_raw
ground_truth

(a) Raw signals

0.0 0.2 0.4 0.6 0.8 1.0
t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r(t
)

RATIO_A_B_raw

(b) Raw ratio

Figure 2: Raw synthetic signals and their ratio together with the ground-truth signal.
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(a) Corrected and ground-truth signals
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(b) Raw and corrected ratios

Figure 3: Corrected synthetic signals, and comparison of raw and corrected ratios using
SMOOTHMONOTONIC.

correction is plotted. The output signal fits the ground-truth very well, however, it is a bit smoother
because the small number of inducing points cannot capture fast fluctuations.
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(a) m = 500
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(b) Output and ground-truth signals and data points

Figure 4: Ground-truth estimation with 95% confidence interval using SPARSEVARIATIONALGP
and m = 500.

Sparse Gaussian processes provide a simple and powerful framework for observing the signal on
multiple timescales by varying the number of inducing points m, which can be seen in fig. 4 and
fig. 5 with m ∈ {100, 300, 500}. We can observe how by increasing m, the level of detail increases.

Finally, in fig. 6 we visualize the first three steps of running the iterative correction algorithm. If signal
b is estimated well, correction for that step is better as well. This is the main intuition underlying
both correction methods.

6 Conclusion

In the paper we presented a framework how to obtain a posterior belief about the measured signal,
given measurements which came from at least two sensors which were exposed different amounts of
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(a) m = 100
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(b) m = 300

Figure 5: Comparison of observing the ground-truth signal on multiple timescales by varying the
number of inducing points m for m ∈ {100, 300} and m = 500 in fig. 4.
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Figure 6: Convergence history.

time. The method consists of two parts; the first part serves to correct the degradation, while in the
second part we fuse measurements from different sensors using Gaussian processes with a specialized
kernel. We proved the convergence to the ground-truth for the first part of the method for the noiseless
measurement model. We left for the future work to analyze the convergence in the presence of noise.
To fuse the measurements we designed a special kernel which can incorporate the information that
measurements come from sensors with possibly different measurement noise variances. Due to the
large amount of data Sparse Gaussian processes were utilized instead of Gaussian processes, and
empirically showed that by choosing large enough number of inducing points we obtain a decent
approximation as well as observe the signal on multiple timescales.
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A Appendix

A.1 Degradation Iterative Correction

In section 2 we presented the CORRECTONE iterative correction method. Here its counterpart is
described. In CORRECTBOTH at every iteration the ratio between the corrected signals is computed
and thus in the limit this ratio goes to 1 as specified in eq. (CORRECTBOTH).

rn(ea(t)) =
an(t)

bn(t)
an+1(t) =

an(t)

rn(ea(t))
bn+1(t) =

bn(t)

rn(eb(t))
for n = 0, 1, . . .

(CORRECTBOTH)

Algorithm 2 CORRECTBOTH((a[k])k∈[nm] , (b[k])k∈[nm] , (ea[k])k∈[nm] , (eb[k])k∈[nm])

1: while not converged do . E.g. ‖ai+1 − ai‖2 / ‖ai‖2 + ‖bi+1 − bi‖2 / ‖bi‖2 > ε

2: r ← a
b . Divide signals a and b pointwise, i.e. r[k] = a[k]

b[k] ∀ k ∈ [nm]

3: f(·)← FITCURVETO((ea[k])k∈[nm] , (r[k])k∈[nm]) . Learn mapping f : ea 7→ f(ea)

4: a← a
f(ea)

. Correction update of signal a
5: b← b

f(eb)
. Correction update of signal b

6: end while
7: ac ← a; bc ← b . Corrected signals, a(t) ≈ s(t) and b(t) ≈ s(t)
8: rc ← a

bc
. Divide signals a and bc pointwise with rc(ea) ≈ d(ea)

9: dc(·)← FITCURVETO((ea[k])k∈[nm] , (rc[k])k∈[nm]) . Learn degradation function d(·)
10: return (ac[k])k∈[nm] , (bc[k])k∈[nm] , dc(·) . Return corrected signals and degradation function

A.2 Convergence Theorems

Proving the convergence of CORRECTBOTH goes along the similar lines as for CORRECTONE. For
completeness, these proofs are stated next.
Proposition 3 (CORRECTBOTH for ea(t) = t and eb(t) = t

2 ). Let a0(t) = s(t) · d(t) and b0(t) =
s(t) ·d( t2 ) for t ≥ 0, where s(t) > 0 is the ground-truth signal and d : R≥0 → [0, 1] is a continuous
degradation function with d(0) = 1. If we run algorithm for n = 0, 1, . . . :

rn(t) =
an(t)

bn(t)
, an+1(t) =

an(t)

rn(t)
, bn+1(t) =

bn(t)

rn(
t
2 )
,

then it holds ∀ t ≥ 0 : limn→∞ an(t) = limn→∞ bn(t) = s(t).

Proof. Let us fix an arbitrary t > 0. Then we observe

rn(t) =
an(t)

bn(t)
=
an−1(t)

rn−1(t)

rn−1(
t
2 )

bn−1(t)
= rn−1

(
t

2

)
= · · · = r0

(
t

2n

)
,

where the last equality follows by induction. Now, let us focus on the sequence bn(t):

bn(t) =
bn−1(t)

rn−1(
t
2 )

=
bn−1(t)

r0(
t
2n )

=
bn−2(t)

r0(
t
2n ) · rn−2(

t
2 )

=
bn−2(t)

r0(
t
2n ) · r0(

t
2n−1 )

=
b0(t)∏n

i=1 r0(
t
2i )

. (7)

Calculation of ratio r0(t) gives us

r0(t) =
a0(t)

b0(t)
=

s(t) · d(t)
s(t) · d( t2 )

=
d(t)

d( t2 )
.
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Inserting the latter observation and b0(t) = s(t) · d( t2 ) into equation (7) yields

bn(t) =
s(t) · d( t2 )∏n
i=1

d( t

2i
)

d( t

2i+1 )

= s(t) · d
(
t

2

) ∏n
i=1 d(

t
2i+1 )∏n

i=1 d(
t
2i )

= s(t) ·
∏n+1
i=1 d(

t
2i )∏n

i=1 d(
t
2i )

= s(t) · d
(

t

2n+1

)
.

The proof is established by sending n −→∞, which gives

lim
n→∞

bn(t) = lim
n→∞

s(t) · d
(

t

2n+1

)
= s(t) · d

(
t

limn→∞ 2n+1

)
= s(t) · d(0) = s(t).

Remark 2. The fact that limn→∞ an(t) = limn→∞ bn(t) holds is easily obtained from

an+1(t) =
an(t)

rn(t)
=
an(t) · bn(t)

an(t)
= bn(t).

As for CORRECTONE we have a direct corollary for an arbitrary k > 1.

Corollary 2 (CORRECTBOTH for ea(t) = t and eb(t) = t
k , k > 1). Let a0(t) = s(t) · d(t) and

b0(t) = s(t) · d( tk ) for t ≥ 0, where s(t) > 0 is the ground-truth signal, d : R≥0 → [0, 1] is a
continuous degradation function with d(0) = 1 and k > 1 is an arbitrary sampling rate parameter.
If we run algorithm for n = 0, 1, . . . :

rn(t) =
an(t)

bn(t)
, an+1(t) =

an(t)

rn(t)
, bn+1(t) =

bn(t)

rn(
t
k )
,

then it holds ∀ t ≥ 0 : limn→∞ an(t) = limn→∞ bn(t) = s(t).

Proposition 4 (CORRECTBOTH for ea(t) = t and eb(t) = e(t), e(t) < t). Let a0(t) = s(t) · d(t)
and b0(t) = s(t) · d(e(t)) for t ≥ 0, where s(t) > 0 is the ground-truth signal, d : R≥0 → [0, 1] is
a continuous degradation function with d(0) = 1 and e(t) is the exposure function of signal b, for
which it holds e(0) = 0 and e(t) < t for all t > 0. If we run algorithm for n = 0, 1, . . . :

rn(t) =
an(t)

bn(t)
, an+1(t) =

an(t)

rn(t)
, bn+1(t) =

bn(t)

rn(e(t))
,

then it holds ∀ t ≥ 0 : limn→∞ an(t) = limn→∞ bn(t) = s(t).

Proof. Let us fix an arbitrary t > 0 and compute b1(t), which gives

b1(t) =
b0(t)

r0(e(t))
= s(t) · d(e(t)) · d(e(e(t)))

d(e(t))
= s(t) · d(e(e(t))).

Let en(t) = (e ◦ e ◦ · · · ◦ e)︸ ︷︷ ︸
n times

(t), then by induction we have

bn(t) = s(t) · d(en+1(t)).

By taking the limit n −→∞, we get

lim
n→∞

bn(t) = lim
n→∞

s(t) · d
(
en+1(t)

)
= s(t) · d

(
lim
n→∞

en+1(t)
)
.

Let η = limn→∞ en+1(t), then we have

η = lim
n→∞

en+1(t) = e( lim
n→∞

en(t)) = e(η)

but since e(η) < η for η > 0 and e(0) = 0 we obtain η = 0. Hence we conclude this proof as

lim
n→∞

bn(t) = s(t) · d(0) = s(t).
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Theorem 2. Let a0(t) = s(t) · d(ea(t)) and b0(t) = s(t) · d(eb(t)) for t ≥ 0, where s(t) > 0 is
the ground-truth signal, d : R≥0 → [0, 1] is a continuous degradation function with d(0) = 1 and
ea(t), eb(t) : [0,∞)→ [0,∞) are the continuous exposure function of signal a and b respectively.
Let us further assume ea(0) = eb(0) = 0, eb(t) < ea(t) for all t > 0 and that there exist function
e−1a : [0,∞)→ [0,∞). If we run algorithm for n = 0, 1, . . . :

rn(t) =
an(t)

bn(t)
, an+1(t) =

an(t)

rn(t)
, bn+1(t) =

bn(t)

rn((e
−1
a ◦ eb)(t))

,

then it holds ∀ t ≥ 0 : limn→∞ an(t) = limn→∞ bn(t) = s(t).

Proof. Let h(t) = d(ea(t)). Then it holds d(eb(t)) = h(e−1a ◦ eb)(t). If we denote e = e−1a ◦ eb,
then the proposed algorithm transforms to:

rn(t) =
an(t)

bn(t)
, an+1(t) =

an(t)

rn(t)
, bn+1(t) =

bn(t)

rn(e(t))
,

with the initial setting: a0(t) = s(t) · h(t) and b0(t) = s(t) · h(e(t)). Since eb(t) < ea(t) holds,
e(t) < t holds as well, and since ea(0) = eb(0) = 0 holds, e(0) = 0 and h(0) = d(ea(0)) = d(0) =
1 holds as well. Since the assumptions from proposition 4 are satisfied, we are done.
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