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Abstract

We present the first approach for learning – from a single trajectory – a linear
quadratic regulator (LQR), even for unstable systems, without knowledge of the
system dynamics and without requiring an initial stabilizing controller. Our central
contribution is an efficient algorithm – eXploration – that quickly identifies a
stabilizing controller. Our approach utilizes robust System Level Synthesis (SLS),
and we prove that it succeeds in a constant number of iterations. Our approach
can be used to initialize existing algorithms that require a stabilizing controller as
input. When used in this way, it yields a method for learning LQRs from a single
trajectory and even for unstable systems, while suffering at most Õ(

√
T ) regret.

1 Introduction

Dynamical systems are ubiquitous in real world applications, ranging from autonomous robots
(Ribeiro et al., 2017), energy systems (Haddad et al., 2005) to manufacturing (Singh, 2010). Control
theory (Trentelman et al., 2001) seeks to find an optimal input to the system to ensure a desired
behavior while suffering low cost. In particular, linear dynamical systems with quadratic costs can
model a variety of practical problems (Tornambè et al., 1998), and enjoy an elegant solution referred
to as Linear Quadratic Regulator (LQR), whose history goes back to Kalman (1960).

Despite the long and rich history of the LQR problem, learning dynamical systems and their optimal
controllers is still an actively studied problem. On one hand, there are systems that can be reset to an
initial condition. For such systems, the multiple-trajectory (episodic) setting is natural and exploration
costs can be controlled by resetting the system. This setting is well studied and efficient algorithms rely
on certainty equivalent control (CEC) (Mania et al., 2019). On the other hands, other systems cannot
be reset and must thus be learnt online from a single trajectory. In this setting, the OSLO algorithm
(Cohen et al., 2019) is provably efficient. It is based on the optimism-in-the-face-of-uncertainty
(OFU) principle, whereas epsilon-greedy (certainty equivalent with additive random noise) is also
provably efficient (Simchowitz and Foster, 2020). Crucially, both algorithms require prior knowledge
in form of an initial stabilizing controller. This privileged information is essential to ensure that
unstable systems do not “explode”. However, such prior knowledge is not always available.
Contributions In this work, we develop an approach for provably efficiently learning an LQR
for potentially unstable systems from a single trajectory and without the knowledge of an initial
stabilizing controller. Our central contribution is an initial eXploration phase that does not require a
stabilizing controller. During this phase, we estimate the parameters of the system and stop once we
have identified a controller that provably stabilizes the underlying system. Crucially, we prove that
this phase ends after constant time, essentially adding no regret to the algorithm. Our algorithm can
be used to initialize existing approaches (such as OSLO and CEC) that require a stabilizing controller,
without introducing (more than constant) additional regret. Together, this yields the X-OSLO and
X-CEC algorithms with provable Õ(

√
T ) regret. Our basic eXploration approach uses zero-mean

Gaussian exploration which can cause instability (albeit only for provably constant rounds). We
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also introduce heuristics for finding a stabilizing controller even during the unstable eXploration
phase, which empirically reduces the length of the phase and substantially lowers the total regret. We
demonstrate the practicality of our method on common benchmark problems from Dean et al. (2019).

1.1 Related Work

Linear dynamical systems have been extensively studied in control theory (cf., Zhou et al. (1996)).
Here, we focus on the most closely related recent work on learning LQR controllers. Simchowitz and
Foster (2020) establish fundamental limits that show that that the minimal regret any algorithm can
attain is at least of order Ω(

√
T ). We seek algorithms that match this lower bound.

Multi-trajectory (Episodic) Setting Dean et al. (2019) present the Coarse-ID control algorithm
that is provably efficient. Coarse-ID control explores episodically until it outputs a single controller,
by solving a robust control synthesis problem, which provably stabilizes the underlying system.
Unfortunately, Coarse-ID control has sub-optimal Õ(T 2/3) regret (Dean et al., 2018). The sub-
optimality arises from the fact that the output controller is being robust (or pessimistic). Mania et al.
(2019) prove that using Certainty Equivalent Control (CEC) with epsilon-greedy exploration during
each episode is enough to prove an optimal Õ(T 1/2) regret bound.

Single-trajectory (Online) Setting Some systems cannot be reset and the episodic setting is
inappropriate to model them. For this more challenging setting, Abbasi-Yadkori and Szepesvari
(2011) propose an algorithm based on the OFU principle that has provable Õ(T 1/2) regret, but it
requires to solve at every time-step a non-convex optimization problem. Cohen et al. (2019) overcome
this drawback by relaxing the non-convex optimization problem into an efficient semi-definite program
(SDP), yielding the OSLO method. Perhaps surprisingly, Simchowitz and Foster (2020) prove that
CEC with epsilon-greedy exploration is also optimal in this setting. Crucially, all works in this setting
require the knowledge of an initial stabilizing controller, which might not always be available.

Online Learning of Unstable Systems Recent results suggest that detecting unstable modes
of the system is easier than learning stable ones (Simchowitz et al., 2018), hence suggest that
learning general systems with possibly unstable modes is possible. In particular, Sarkar and Rakhlin
(2019) propose to use an ordinary least squares (OLS) estimator for the parameters of general linear
dynamical systems and present a non-asymptotic analysis for the estimation error. In this work,
we use regularized least squares (RLS) estimates and refine their bounds to build data-dependent
confidence intervals on the parameter errors. We use these bounds together with robust control
synthesis in a similar spirit of Coarse-ID (Dean et al., 2019). Our main contribution is an algorithm
that outputs a provably robust controller for general systems in constant time, adding no regret to the
CEC and OSLO algorithms described previously.

2 Problem Statement and Background

We consider a system evolving with the following linear dynamics

xi+1 = A∗xi +B∗ui + wi+1, x0 = 0, (1)

where xi ∈ Rd are states, ui ∈ Rk actions, (wi)i≥1
i.i.d.∼ subGd(σ

2) unobserved non degenerated
sub-Gaussian noise in Rd with unknown variance proxy σ2. The matrices A∗ ∈ Rd×d, B∗ ∈ Rd×k
are unknown transition matrices. We further assume that the system is stabilizable, which means that
there exists a matrix K ∈ Rk×d for which it holds that the spectral radius ρ(A∗ +B∗K) < 1.

At every step i, the system incurs a cost ci given by,

ci = x>i Qxi + u>i Rui, (2)

where Q ∈ Rd×d, R ∈ Rk×k are known positive definite matrices. The objective of the learner is to
minimize the expected infinite horizon cost limT→∞

1
T

∑T
i=1 E[ci].

When the system matrices A∗, B∗ are known, the optimal solution is given by the fixed map ui =
K∗xi and the optimal cost is J∗ (Bertsekas, 2000). Hereby,K∗ = −(R+B>∗ PB∗)

−1B>∗ PA∗, where
P is the solution to discrete algebraic Ricatti equation of the system, P = DARE(A∗, B∗, Q,R).
When the matrices A∗, B∗ are unknown, the learner can use all the information up to time i to play an
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action ui. We call a map π from all the observed past states (xj)
i
j=0 and actions (uj)

i−1
j=0 to an action

ui a policy. For such a policy, we define its regret Rπ(T ), where T is the number of steps taken, as

Rπ(T ) =

T∑
i=1

(ci − J∗) , (3)

where J∗ is the optimal cost, and ci is the cost incurred by π at time i. We seek a policy with sublinear
regret with high probability.

2.1 Background on System Level Synthesis (SLS)

In this section, we summarize the SLS framework (Wang et al., 2019). We use SLS to find a linear
controller K, i.e. ui = Kxi, that provably stabilizes the true underlying system.

Assume that we have estimates (Â, B̂). Dean et al. (2019) show that a controller K stabilizes all
systems (A,B) with ‖Â−A‖ ≤ εA and ‖B̂ −B‖ ≤ εB if :∥∥∥∥(√2εAI√

2εBK

)(
zI − Â− B̂K

)−1
∥∥∥∥
H∞

< 1. (4)

The H∞-norm for a function f : C → Cd×d is defined as ‖f‖H∞ = supz∈∂D ‖f(z)‖, where
D = {z ∈ C| ‖z‖ < 1} is a unit disk in the complex plane. Dean et al. (2019) further prove that
condition (4) is equivalent to the feasibility of the following SDP:

min
s∈[0,1),X�0,Z

s

s.t.


X − I ÂX + B̂Z 0 0

XÂ> + Z>B̂> X εAX εBZ
>

0 εAX
1
2sI 0

0 εBZ 0 1
2sI

 < 0.
(5)

The robust policy is then extracted from optimal solution of SDP (5) as K = ZX−1. The convex
SDP (5) can be solved efficiently (e.g., using MOSEK (ApS, 2020)).

2.2 Background on online LQR Algorithms

In this section, we review the two optimal algorithms for online LQR, namely OSLO (Cohen et al.,
2019) and CEC (Algorithm 1 of Simchowitz and Foster (2020)). Both algorithms require as input an
initial stabilizing controller K0. Then they split their algorithms into two phases: a warm-up (safe
exploration), and an exploitation phase.

The safe exploration phase is equivalent in both algorithms. The learner explores with actions
ui ∼ N (K0xi,Σ), where Σ is an appropriately chosen covariance matrix as shown in appendices C
and D. It then uses RLS to refine the estimates (Â, B̂) of the true system. This phase is crucial to
bound the closed-loop dynamics that arise during exploitation.

The main difference between both algorithm comes in the final phase. OSLO solves an optimistic
SDP to carefully balance exploration and exploitation. CEC, instead, greedily exploits the current
estimates and injects random noise that decays as O(1/

√
i), to balance exploration and exploitation.

As CEC does not need to solve an optimistic problem, it attains better regret bounds in terms of
dimensions and the optimization problem enjoys a closed form solution. For general systems, such
naive greedy exploitation is inefficient, but for the particular structure of LQR, it is optimal.

3 Efficiently Learning a Stabilizing Controller with Unstable Exploration

We now show how to use the SLS approach (c.f., section 2.1) to provably find a robust controller. In
section 3.2, we show how to combine this initial eXploration phase with the OSLO (Cohen et al.,
2019) or the CEC algorithms (Simchowitz and Foster, 2020), transforming them into the X-OSLO,
X-CEC algorithm respectively.
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3.1 Efficient eXploration for identifying a stabilizing controller

We now present an algorithm that finds a controller which provably stabilizes the true system in
constant time. The learner explores using independent Gaussian noise ui ∼ N (0, σ2

uI) and uses
a RLS estimator to estimate the (A∗, B∗) parameters of the dynamical system, together with high-
probability confidence bounds on these parameters. Algorithm 1 ends when we can find a feasible
solution to a robust controller synthesis problem and returns a controller K0. Using section 2.1, we
can prove, with high probability, that the controller K0 stabilizes the true underlying system, i.e.,
ρ(A∗ +B∗K0) < 1. Next, we prove that eXploration, shown in Algorithm 1, finishes in Õ(1) time.

Algorithm 1 eXploration

1: Input: x0 = 0, ϑ, s.t. ‖(A∗ B∗)‖ ≤ ϑ
2: for s = 1, . . . do
3: Play us−1 ∼ N (0, σ2

uI) and observe state xs

4: Let (As, Bs) be a minimizer of argminA,B
∑
i<s ‖xi+1 − (A B)

(
xi
ui

)
‖2 + λ ‖(A B)‖2F

5: Solve SDP (5) with (Â, B̂) = (As, Bs) and εA, εB from Corollary 2 (use ϑ in upper bound).
6: if SDP is feasible return associated controller K0

7: end for

The first step towards proving that Algorithm 1 finishes in constant time is to show that the estimators
As, Bs in Algorithm 1 converge towards A∗, B∗. To identify the system matrices A∗, B∗ we consider
the RLS estimator, defined as:

As, Bs = argmin
A,B

s−1∑
i=0

∥∥∥∥xi+1 − (A B)

(
xi
ui

)∥∥∥∥2

+ λ ‖(A B)‖2F . (6)

Sarkar and Rakhlin (2019) show that as long as matrix A∗ is regular (i.e., all its eigenvalues with
absolute value larger than 1 have geometric multiplicity 1) and the actions taken are independent and
non degenerated ui ∼ subGk(σ2

u), the OLS estimator is consistent. In appendix A, we adapt the
analysis of Sarkar and Rakhlin (2019) for OLS to the RLS estimator that we use, yielding:
Corollary 1 (based on Theorem 2 of Sarkar and Rakhlin (2019)). Let us be in the setting of (1) and
suppose that (ui)i≥0

i.i.d.∼ subGk(σ2
u) are non-degenerate independent of (wi)i≥1. Further assume

that matrix A∗ is regular. Then, with probability at least 1− δ for the RLS estimators (6) it holds:

max (‖As −A∗‖ , ‖Bs −B∗‖) ≤
poly(log s, log 1

δ )
√
s

,

whenever s ≥ poly(log 1
δ ).

Improved upper bound The upper bound of Corollary 1 on the estimation error is more
of theoretical interest, and rather loose in practice. While running Algorithm 1, we prefer an
upper bound that is as tight as possible so that we can stop early. Here, we present an improved,
data-dependent upper bound on the estimation errors ‖As − A∗‖, ‖Bs − B∗‖ that we can use in
Algorithm 1. The key insight is that after running the algorithm for s steps, we – in addition to the
knowledge of actions (ui)i≤s – observe the states (xi)i≤s and can also leverage them. For the RLS
estimator given in (6), we derive in appendix A that:

((As Bs)− (A∗ B∗))
>

= (Vs + λI)
−1
Ss − λ (Vs + λI)

−1
(A∗ B∗)

>, (7)

where Vs =
∑s−1
i=0 ziz

>
i and Ss =

∑s−1
i=0 ziw

>
i+1, with zi = (x>i u

>
i )>. Since we know an upper

bound ϑ for ‖(A∗ B∗)‖ ≤ ϑ and we observe Vs, the only term that we still have to deal with, in
order to upper bound the estimation error, is Ss. In the following, we will show an upper bound
for
∥∥∥(Vs + λI)−

1
2Ss

∥∥∥. The result builds on ideas from Abbasi-Yadkori et al. (2011) and Sarkar and
Rakhlin (2019).
Proposition 1. In the aforementioned setting let ε ∈ (0, 1) arbitrary. Then it holds w.p. at least 1−δ:

∀s ≥ 0 :
∥∥∥(Vs + λI)−

1
2Ss

∥∥∥2

≤ 2R2

(1− ε)2
log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)d
δ

)
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The proof can be found in appendix A. Collecting the results together, we arrive at an upper bound
that we apply in the algorithm.
Corollary 2. For the RLS estimates from Algorithm 1 it holds w.p. at least 1− δ for every s ≥ 0:

‖As −A∗‖ ≤
R

1− ε

√√√√2 log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)d
δ

)∥∥∥(Id 0)(Vs + λI)−1/2
∥∥∥

+ λ
∥∥(Id 0)(Vs + λI)−1

∥∥ϑ
‖Bs −B∗‖ ≤

R

1− ε

√√√√2 log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)d
δ

)∥∥∥(0 Ik)(Vs + λI)−1/2
∥∥∥

+ λ
∥∥(0 Ik)(Vs + λI)−1

∥∥ϑ
Since the upper bound in Corollary 2 holds for every ε ∈ (0, 1), we optimize over ε to obtain the best
possible bound while running the algorithm.

Feasibility of SLS synthesis The next building block is to find a condition under which the SDP
(5) becomes feasible. For large εA, εB the problem (5) is usually infeasible. Nevertheless, for small
εA and εB , we can guarantee that the SLS synthesis (5) is feasible.
Lemma 1. Let K be any controller for which it holds that ρ(A∗ +B∗K) ≤ γ0 < 1. If

max(εA, εB) ≤ 1

3(1 + ‖K‖)C(γ0, A∗, B∗,K)
,

then Problem (5) is feasible.

Here, C(γ0, A∗, B∗,K) is a constant that depends only on γ0 and norms of matrices A∗, B∗ and K.
The explicit relation together with the proof of the Lemma is given in appendix B.

Main Result We combine our results on SLS synthesis in lemma 1 with the tighter upper bounds
of corollary 1 to obtain the bound on the maximum number of steps taken by algorithm 1.
Theorem 1. Let δ, ε ∈ (0, 1) and K any controller which stabilizes the underlying system A∗, B∗
with ρ(A∗ + B∗K) ≤ γ0 < 1. If we play actions ui ∼ N (0, σ2

uI)), Algorithm 1 terminates with
probability at least 1− δ in at most O((poly(log 1

δ )(1 + ‖K‖)C(γ0, A∗, B∗,K))2+ε) steps.

3.2 X-OSLO and X-CEC

In this section, we extend both OSLO and CEC to the case where an initial stabilizing controller
is not available, by initializing them with our novel eXploration algorithm 1. We call the resulting
algorithms X-OSLO, X-CEC, respectively. We prove that both algorithms still achieve regret Õ(

√
T ).

Instead of a stabilizing controller, X-OSLO and X-CEC only require two scalar parameters ϑ, with
‖(A∗, B∗)‖ ≤ ϑ, and γ0, such that there exists a controller K with ρ(A∗ +B∗K) ≤ γ0 < 1. We as-
sume that the system is stabilizable, hence γ0 exists. The parameter ϑ can be a very loose bound at the
beginning, since we can update it while we run the algorithm via ϑi+1 = min(ϑi, ‖Âi‖+ai+ϑi/bi),
where usually ai is of order 1√

i
and bi grows linearly. Both algorithms further require time horizon

T and cost matrices Q,R which the control designer provides.

The general structure of X-OSLO and X-CEC is the following. Phase I: run eXploration until we
find a controller K0 which provably stabilizes the true system. Phase II: play ui ∼ N (K0xi,Σ) to
tighten the bounds until we can prove that exploiting yields O(

√
T ) regret. Phase III: exploit the

knowledge of the tight estimates and play either optimistically (X-OSLO) or greedily (X-CEC).

X-CEC Algorithm: We do not change the implementation of Phase II and III of the original CEC
algorithm. Namely, in Phase II we use the policy ui ∼ N (K0xi, I) and in Phase III the certainty
equivalent controller together with epsilon greedy noise scaled as O(1/

√
i).

X-OSLO Algorithm: We modify the analysis of the warm-up phase of OSLO (Phase II). Cohen
et al. (2019) require the strong stability parameters of the unknown closed loop matrix A∗ +B∗K0 to
prove that this phase terminates in O(

√
T ) time. Instead of the required strong stability parameters,
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we leverage the knowledge of ρ(A∗ + B∗K0) < 1. In appendix C we prove that this is sufficient
to provably terminate this phase in O(

√
T ). Practically, we can also terminate Phase II before by

evaluating the upper bounds from corollary 2. Once we establish that ‖Â − A∗‖2, ‖B̂ − B∗‖2 ≤
O(1/

√
T ) we move on to OSLO’s Phase III using an optimistic strategy.

We now state the theorem which bounds the total regret of the X-OSLO algorithm. In appendix D we
provide an analogous theorem for X-CEC.

Theorem 2. Suppose A∗ is regular and that there exists K with ρ(A∗ +B∗K) ≤ γ0 < 1. Suppose
that for known matrices Q,R there exists α0 such that 0 � α0I � Q,R. Further assume that
T ≥ poly

(
n, ϑ, α−1

0 , σ−1, (1− γ0)−1, log 1
δ , ‖A∗‖ , ‖B∗‖ , ‖K‖

)
. Then the total regret of the X-

OSLO algorithm is, with high probability, bounded by

RT = O
(√

T log2 T
)
.

Proof sketch. By theorem 1, we know that after a constant (in T ) number of steps the eXploration
algorithm will yield a stabilizing controller. Hence the regret of the first phase is constant. Next, while
running the warm-up phase for O(

√
T log T ), the squares of states norm are bounded by O(log T ),

X-OSLO incurs regret of O(
√
T log2 T ) and we obtain Â, B̂ with max(‖Â−A∗‖2, ‖B̂ −B∗‖2) ≤

O(1/
√
T ). With the obtained estimates, in the final exploitation phase we run the OSLO algorithm

until the end. This last phase again suffers O(
√
T log2 T ) regret. Hence the total regret is of order

O(
√
T log2 T ).

Stable Systems If the true underlying system is stable, then the eXploration phase still terminates
in constant time and the results in this section still hold. Practically, this means that X-OSLO and
X-CEC will have two (safe) warm-up phases with possibly different stabilizing controllers.

4 Improved eXploration policies

The basic eXploration approach (Phase I of X-OSLO and X-CEC) takes random actions
ui ∼ N (0, σ2

uI). For this choice we can guarantee that Phase I terminates after constant time,
depending solely on the system parameters. However, as we demonstrate in our experiments (c.f.,
section 5), the states can grow exponentially during this phase, which can be highly problematic for
certain applications. We now propose improved, data-dependent policies to counteract this blow-up.

In particular, we consider playing ui ∼ N (Kixi, σ
2
uI), whereKi is a controller picked at time i. With

such a controller, we generally lose the theoretical guarantee that the Phase I will end. However, the
upper bounds on estimation errors from Corollary 2 (and thus the validity of the stopping condition)
still hold and we can run Algorithm 1. Here, we discuss different choices for controller Ki that we
study in our experiments.

As first possibility, we could act as if the estimators Ai, Bi are the true system matrices and we
compute the controller Ki as the optimal controller: Ki = −(R + B>i PBi)

−1B>i PAi, where
P = DARE(Ai, Bi, Q,R), i.e., we act using certainty equivalent control.

As second alternative, we could use robust control. In particular, we start with error estimates εA, εB
given by Corollary 2 and successively half them until the SDP (5) becomes feasible. For controller
Ki, we then take the resulting controller. Since εA, εB are upper bounds on estimation errors, we
expect that the robust controller will stabilize the system much earlier than we have a theoretical
guarantee for that. The latter expectation is indeed supported by our experiments.

For third option, we could again act as if the estimators Ai, Bi are the true system matrices and
we compute the controller Ki as the controller: Ki = (R + B>i PBi)

−1B>i PAi, where P =
DARE(Ai, Bi, Q,R), i.e., we act using negative certainty equivalent control (NegCEC). Sarkar and
Rakhlin (2019) show that identification of purely explosive systems happens with exponential speed,
hence we expect that with this controller Phase I ends fast. However, since we destabilize the system,
we also expect that the norm of the state will grow fast.

Lastly, the last two controllers are a mixture of the NegCEC and either CEC or robust controller. For
the mixed controller we use the following heuristic: we choose for Ki NegCEC whenever ‖xi‖ ≤M ,

6



where M is a predefined margin, and switch to using for Ki either CEC or robust controller when
‖xi‖ > M .

In order to obtain a guarantee that the Phase I ends when we use a non-trivial Ki, we restrict
ourselves to the case when matrix B∗ is known and has a full row rank. In this case, we can without
loss of generality assume that B∗ is the identity, and the learner only needs to learn matrix A∗. This
setting is, in the one dimensional case, discussed by Rantzer (2018). They show that as long as
actions ui are measurable functions of the past (any controller Ki satisfies this) it holds for OLS
estimator As that ‖As − A∗‖ ≤ O(1/

√
s). A natural question that arises then is whether one can

obtain estimation error of O(1/
√
s) for arbitrary measurable actions of the past also for the case

of state dimension d with d ≥ 2. As we show in appendix E, when d ≥ 2, perhaps surprisingly,
there exists a controller for which the OLS estimator is not consistent. The intuition behind this lies
in the fact that in the one-dimensional case the smallest singular value of the empirical covariance
matrix

∑
i xix

>
i is equal to the largest one, while in case d ≥ 2 this does not hold, and the estimation

procedure might not be consistent anymore. However, we can still prove convergence under some
additional assumptions, as stated in the next theorem.

Theorem 3. Let xi+1 = A∗xi + ui + wi+1, x0 = 0, where xi ∈ Rd, (wi)i≥1
i.i.d.∼ N (0, σ2

wI)
and actions ui = Kixi are chosen in such a way that for every time i it holds: ‖xi‖ ≤ M1 and
‖A∗ +Ki‖ ≤M2 for some constants M1,M2, which do not depend on time. Then at every time s it
holds for the RLS estimator As of the matrix A∗ with probability at least 1− δ:

‖As −A∗‖ ≤
O(1)(d log s+ log 1

δ )
√
s

The proof of the theorem and the constants that hide in O(1) are given in appendix E.

5 Experiments

To evaluate our eXploration approach, we run the X-OSLO for the time it needs to finish the Phase
I (note that this first phase is identical for X-CEC as well). We try to understand how fast we can
obtain a stabilizing controller, and how much regret we suffer until that happens. Due to very similar
performance of CEC and robust controller we show the result here only for robust controller, the
results for CEC we present in appendix F. In appendix F we test X-OSLO also on different dynamical
systems. Here we run X-OSLO on the following dynamical system:

A∗ =

(
1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

)
, B∗ = I, Q = I, R = I, (8)

introduced by Dean et al. (2019) and assume both A∗ and B∗ are unknown. The noise follows
(wi)i≥1

i.i.d.∼ N (0, I) and actions (ui)i≥0
i.i.d.∼ N (0, I).

0 200 400 600 800 1000
Number of steps

100

101

102

Trajectory norm history
Trajectory norm
End of Phase 1

(a) Zero mean Gaussian actions

0 50 100 150 200
Number of steps

100

101

102

103

Trajectory norm history
Trajectory norm history
End of Phase 1

(b) NegCEC

0 200 400 600 800 1000
Number of steps

100

101
Trajectory norm history

Trajectory norm history
End of Phase 1

(c) Robust control

Figure 1: Comparison of state magnitude for different controllers used in Phase I (eXploration).
NegCEC leads to state blow-up, but quickly ends Phase I. In contrast, the robust controller avoids
blow-up at the cost of delayed convergence.

Since two eigenvalues of the matrix A are larger than 1, the norm of the state ‖xi‖ is exponentially
increasing, which is expected, since the input actions are zero mean Gaussian. However by Theorem 1
we know that after constantly many steps, we will find a stabilizing controller as we see in Figure 1a.

7



Improved action selection during Phase I As discussed in section 4, instead of playing standard
Gaussian actions, at each step, we can select an action ui as ui ∼ N (Kixi, I), where Ki is a
controller picked at step i. In fig. 1b and fig. 1c we present the case where we choose for Ki the
NegCEC and robust controller respectively.

We empirically observe that when we use the robust controller, the states do not blow up. However
it usually takes more time to find a provably stabilizing controller. At the same time, we observe
that using the NegCEC, the norm of the state increases faster, but the stabilizing controller is also
found much faster. In fig. 2, we test the behavior of the mixed controller between NegCEC and robust
controller from section 4 with margin M = 10 on system (8).

0 50 100 150 200
Number of steps

100

101

Trajectory norm history
Trajectory norm history
End of Phase 1

(a) Trajectory norm

0 50 100 150 200
Number of steps

10 1

100

101

RLS Errors
A A

B B

A A  upper bound
B B  upper bound

End of Phase 1

(b) Estimation errors

Figure 2: (a) Our mixed controller achieves the best of both worlds: fast termination of Phase I, while
successfully avoiding state blowup. (b) Our data-dependent bounds overestimate the true estimation
errors, but qualitatively well capture their decay.

As shown in fig. 2 and further experiments in appendix F, our mixed controller bounds the state norms
similarly to the robust controller, and the time it takes to find a stabilizing controller is comparable to
that of NegCEC.

Lastly, table 1 compares the number of steps taken (length of Phase I) and cost suffered to find a
stabilizing controller, between multi- (episodic) and single trajectory (online) exploration. In the
multi-trajectory setting, we reset the system after every rollout length number of steps and use all
collected data to find the RLS estimates. Beyond allowing resets, we additionally provide as bounds
on the estimation error the true errors (not available in practice). We ran every approach 20 times and
present the average number of steps taken and incurred cost. We see that except for the NegCEC, the
incurred costs are comparable between the multi- and single trajectory setting. We expect that looser
bounds on the estimation errors would result in a larger difference between the cost with zero mean
actions (Ki = 0) and multi-trajectory setting. This is because the states would grow exponentially for
longer time in the single trajectory setting compared to the multi-trajectory setting, where we ensure
the boundedness of the states by resetting the system. We also observe that with looser estimation
bounds, the robust controller needs longer to finish Phase I, while such looser bounds do not strongly
influence neither the number of steps taken nor the size of the states for the mixed controller.

Table 1: Comparison of incurred cost and steps taken until we find a stabilizing controller

Rollout length Steps taken Cost Controller Steps taken Cost

6 60 1474 Ki = 0 31 4558
10 62 2231 NegCEC 13 800435
15 64 3451 Robust 20 2471M

ul
ti

tr
aj

.

20 78 5874 Si
ng

le
tr

aj
.

Mixed, M = 10 13 1979

8



6 Conclusions

We presented the first approach for the fundamental problem of learning an LQR controller, even for
unstable systems and from a single trajectory. In particular, we analyzed an algorithm – eXploration
– that provably learns a stabilizing controller from a single trajectory, and can be used to initialize
OSLO and CEC, yielding an algorithm with optimal regret. Beyond theoretically analyzing Gaussian
eXploration, we tested different controllers in order to speed up the system identification and bound
the state blow up.

Broader Impact

Currently, there is a lack of provably efficient and practical algorithms for real-world RL problems,
limiting their applicability to promising applications such as personal robotics, efficient transportation,
control of renewable energy systems etc. While restricted to linear quadratic regulators, our paper
makes important contributions in this regard.
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A System identification

In this section we derive the difference between RLS estimator and the true system given in eq. (7),
show how we can use the analysis of Sarkar and Rakhlin (2019) to prove the RLS convergence and
derive the data-dependent upper bounds, which we use while running algorithm eXploration.

A.1 RLS estimator

Let us first derive the eq. (7). From the definition of RLS in eq. (6) follows that As, Bs minimize the
expression

‖(x1 . . . xs)− (A B) (z0 . . . zs−1)‖2F + λ ‖(A B)‖2F (9)

in variables A,B. Deriving eq. (9) with respect to (A B) and setting the derivative to zero we obtain:

(As Bs)
> =

(
s−1∑
i=0

ziz
>
i + λI

)−1(s−1∑
i=0

zix
>
i+1

)
.

Using the relation xi+1 = (A∗ B∗)zi + wi+1 we obtain:

(As Bs)
> =

(
s−1∑
i=0

ziz
>
i + λI

)−1(s−1∑
i=0

ziz
>
i (A∗ B∗)

> + ziw
>
i+1

)

=

(
s−1∑
i=0

ziz
>
i + λI

)−1(s−1∑
i=0

(
ziz
>
i + λI

)
(A∗ B∗)

> − λ(A∗ B∗)
> + ziw

>
i+1

)
= (A∗ B∗)

> + (Vs + λI)
−1
Ss − λ (Vs + λI)

−1
(A∗ B∗)

>,

which yields eq. (7).

A.2 Proof of Corollary 1

Proof of Corollary 1. Rewrite eq. (1) as:(
xi+1

ui+1

)
=

(
A∗ B∗
0 0

)(
xi
ui

)
+

(
wi+1

ui+1

)
. (10)

Since vi+1 :=

(
wi+1

ui+1

)
are subGd+k(σ2

∗), where σ∗ = max(σ, σu), and since by further denoting

A =

(
A∗ B∗
0 0

)
the eq. (10) can be rewritten as zi+1 = Azi + vi+1, we are in the setting

analyzed by Sarkar and Rakhlin (2019). Since matrix A∗ is regular, also matrix
(
A∗ B∗
0 0

)
is

regular since the eigenvalues of matrix A are {eigenvalues of matrix A∗} ∪ {k zero eigenvalues}.
Further denote by S′s =

∑s−1
i=0 ziv

>
i+i. From the proof of Theorem 2 in their paper follows that∥∥∥V −1/2

s S′s

∥∥∥ ≤ poly(log s, log 1
δ ) and Vs � Ω(s)I (the latter can be observed from eq. (116) in

(Sarkar and Rakhlin, 2019)). Since
∥∥(Vs + λI)−1/2S′s

∥∥ ≤ ∥∥∥V −1/2
s S′s

∥∥∥ and Vs + λI � Vs � Ω(s)I

we obtain:

‖(As Bs)− (A∗ B∗)‖ =

∥∥∥∥(Id 0)

((
As Bs
∗ ∗

)
−
(
A∗ B∗
0 0

))∥∥∥∥ ≤ ∥∥∥∥(As Bs
∗ ∗

)
−
(
A∗ B∗
0 0

)∥∥∥∥
≤
∥∥∥(Vs + λI)−1/2

∥∥∥∥∥∥(Vs + λI)−1/2S′s

∥∥∥+ λ
∥∥(Vs + λI)−1

∥∥∥∥∥∥(A∗ B∗
0 0

)∥∥∥∥
≤
poly(log s, log 1

δ )
√
s

+ λϑO(
1√
s

) =
poly(log s, log 1

δ )
√
s

.

We finish the proof by observation max (‖As −A∗‖ , ‖Bs −B∗‖) ≤ ‖(As Bs)− (A∗ B∗)‖.
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A.3 Data-dependent estimation error upper bound

In this section we prove the results which lead to the data-dependent upper bounds which we use in
the eXploration algorithm. First we prove Proposition 1. For that we use ε-net covering arguments.
For the sake of completeness let us first define it.

Definition 1. Let (X, d) be a metric space and let ε > 0. A subset Nε is called an ε-net if ∀x ∈ X
∃y ∈ Nε such that d(x, y) ≤ ε. The minimal cardinality (finite) of an ε-net is denoted by N (X, ε)
and is called covering number.

For the sake of completeness we further state next lemma which was shown in (Vershynin, 2018).

Lemma 2. For Rn equipped with euclidean metric it holds: N (Sn−1, ε) ≤
(
1 + 2

ε

)n
.

Using ε-net argument the next proposition was proven. Proposition 2 we will use later in order to
prove an estimation error upper bound.

Proposition 2 (Proposition 8.1 in Sarkar and Rakhlin (2019)). Let M ∈ Rn×d be a random matrix.
Then for any ε ∈ (0, 1) there exist u ∈ Sd−1 such that it holds:

P (‖M‖ > z) ≤
(

1 +
2

ε

)d
P (‖Mu‖ > (1− ε)z) .

With the use of the Proposition 2 let us now state and prove Lemma 3 which will help us with
data-dependent bounds. Before stating Lemma 3 let us introduce some notation.

Let F = (Fi)i≥0 be a filtration, (xi)i≥0 stochastic process in Rd adopted to F and (wi)i≥1 zero
mean, conditionally subGl(σ

2), meaning that it holds for every ‖u‖ = 1 , γ ≥ 0 and i ≥ 1:

E
[
eγ(u>wi)|Fi−1

]
≤ e

γ2σ2

2 .

Further denote Vs =
∑s−1
i=0 xix

>
i and Ss =

∑s−1
i=0 xiw

>
i+1.

Lemma 3. Let us be in the aforementioned setting. It holds w.p. at least 1− δ:

∀s ≥ 0 : ‖Ss‖2(Vs+λI)−1 ≤
2σ2

(1− ε)2
log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)l
δ

)

Proof. For ε ∈ (0, 1) we obtain from Proposition 2:

P
(
‖Ss‖(Vs+λI)−1 > y

)
≤
(

1 +
2

ε

)l
P
(
‖Ssu‖(Vs+λI)−1 > (1− ε)y

)
=

(
1 +

2

ε

)l
P
(
‖Ssu‖2(Vs+λI)−1 > (1− ε)2y2

)
,

where u ∈ Rl is an appropriate unit vector. Since Ssu =
∑s
i=1 zi−1(w>i u) and wi are independent

subGl(σ
2) random variables, w>s u are independent subG(σ2) random variables. Hence we can

apply Theorem 3 of Abbasi-Yadkori et al. (2011). Setting

y2 =
2σ2

(1− ε)2
log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)l
δ

)
we obtain that with probability at least 1− δ it holds for every s ≥ 0:

‖Ss‖2(Vs+λI)−1 ≤
2σ2

(1− ε)2
log

(
det(Vs + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)l
δ

)
.

To prove the Proposition 1 we can now simply use Lemma 3.
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Proof of Proposition 1. Denote by Fi = σ((uj)j≤i, (wj)j≤i). We then apply Lemma 3 with Ss =
Ss and Vs = Vs and the result follows.

Proof of Corollary 2. Since the analysis for matrix As is very much the same as for the matrix Bs
we will do it just for As. From eq. (7) we obtain:

(As −A)
>

= (Id 0) (Vk + λI)
−1
Sk − λ(Id 0) (Vk + λI)

−1
(A B)>.

Next using triangle inequality we obtain:

‖As −A‖ ≤ I1 + I2,

where I1 =
∥∥∥(Id 0) (Vk + λI)

−1
Sk

∥∥∥ and I2 =
∥∥∥λ(Id 0) (Vk + λI)

−1
(A B)

∥∥∥ . The first term is by
Lemma 3 bounded w.p. at least 1− δ:

I1 ≤
∥∥∥(Id 0) (Vk + λI)

− 1
2

∥∥∥∥∥∥(Vk + λI)
− 1

2 Sk

∥∥∥
≤
∥∥∥(Id 0) (Vk + λI)

− 1
2

∥∥∥ R

1− ε

√√√√2 log

(
det(Vt + λI)

1
2

det(λI)
1
2

(
1 + 2

ε

)d
δ

)
.

With the bound on I2 term:

I2 =
∥∥∥λ(Id 0) (Vk + λI)

−1
(A B)

∥∥∥ ≤ λ ∥∥∥(Id 0) (Vk + λI)
−1
∥∥∥ϑ,

we conclude the proof.
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B System level synthesis

In this section we prove Lemma 1 and Theorem 1. First, for a matrix A, define its resolvent as
RA(z) = (zI −A)−1 for z ∈ C \ σ(A), where σ(A) is specter of matrix A. Next we, for the sake
of completeness, state Theorem 2.3 of Gil’ (2014) and show its corollary which will come handy.
Theorem 4 (Theorem 2.3 in (Gil’, 2014)). Let A ∈ Rd×d and z 6∈ σ(A). Denote ρ(A, z) =

mindk=1 |λk(A)− z|, then it holds:

‖RA(z)‖2 ≤
1

ρ(A, z)

(
1 +

1

d− 1

(
1 +
‖A‖2F −

∣∣Tr(A2)
∣∣

ρ(A, z)2

)) d−1
2

.

Corollary 3. Let A ∈ Rd×d and ρ(A) < 1, then it holds:

‖RA‖H∞ ≤
1

1− ρ(A)

(
1 +

1

d− 1

(
1 +
‖A‖2F −

∣∣Tr(A2)
∣∣

(1− ρ(A))2

)) d−1
2

.

To prove Lemma 1 we also need the following result of Dean et al. (2019).
Lemma 4 (Lemma 4.2 in Dean et al. (2019)). Let K be a controller such that ρ(A∗ +B∗K) < 1 If
(εA + εB ‖K‖) ‖RA∗+B∗K‖H∞ ≤

1
1+
√

2
, then the SDP (5) is feasible.

To further ease the notation we will byAK,∗ denote the true closed loop matrix if we choose controller
K i.e. AK,∗ = A∗ +B∗K. We have now all the machinery in order to prove Lemma 1.

Proof of Lemma 1. Since ρ(AK,∗) ≤ γ0 < 1 we have by Corollary 3:

∥∥RAK,∗

∥∥
H∞
≤ 1

1− γ0

(
1 +

1

d− 1

(
1 +
‖AK,∗‖2F −

∣∣Tr(A2
K,∗)

∣∣
(1− γ0)2

)) d−1
2

≤ 1

1− γ0

(
1 +

1

d− 1

(
1 +

(
‖A∗‖F + ‖B∗‖F ‖K‖)F

(1− γ0)2

)2
)) d−1

2

.

With

(εA + εB ‖K‖) ≤ max(εA, εB)(1 + ‖K‖),

we obtain that the condition (εA + εB ‖K‖) ‖RA∗+B∗K‖H∞ ≤
1

1+
√

2
from Lemma 4 is satisfied if:

max(εA, εB) ≤ 1

3(1 + ‖K‖)C(γ0, A∗, B∗,K))
,

where we denote:

C(γ0, A∗, B∗,K) =
1

1− γ0

(
1 +

1

d− 1

(
1 +

(
‖A∗‖F + ‖B∗‖F ‖K‖)F

(1− γ0)2

)2
)) d−1

2

.

The proof of Theorem 1 then follows.

Proof of Theorem 1. From Lemma 1 we know that as soon as max(εA, εB) ≤
1

3(1+‖K‖)C(γ0,A∗,B∗,K) the SDP (5) in Algorithm 1 will be feasible and Algorithm 1 will
terminate. At the same time from Corollary 1 we know that if s ≥ poly(log 1

δ ) with probability at
least 1− δ it holds:

max(εA, εB) ≤
poly

(
log s, log 1

δ

)
√
s

≤
poly

(
log 1

δ

)
s1/2−ε/6 .
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Since 1
2+ε ≤

1
2 −

ε
6 , for ε ∈ (0, 1) we obtain that as soon as

s ≥
(
poly

(
log

1

δ

)
(1 + ‖K‖)C(γ0, A∗, B∗,K))

)2+ε

Algorithm 1 has, with probability at least 1− δ, found a controller which stabilizes A∗, B∗.

Remark 1. With the result of Theorem 1 we can upper bound the largest norm of states in eXploration

phase while playing zero Gaussian actions with O
(
‖A∗‖(poly(log 1

δ )(1+‖K‖)C(γ0,A∗,B∗,K)))
2+ε
)

.
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C OSLO

In this section we will first find γ < 1 for which it holds ρ(A∗ +B∗K0) ≤ γ show how to compute
γ and then use it in order to provide refined analysis of warm-up (Phase II) of X-OSLO. To run the
Phase III of X-OSLO we further require an upper bound on optimal expected infinite horizon cost J∗.
We show how we can compute this using the SDP (5) which terminates eXploration phase. For the
ease of presentation we assume in this section that (wi)i≥1

i.i.d.∼ N (0, σ2I).

C.1 Compute γ with ρ(A∗ +B∗K0) ≤ γ < 1

Let us first state a result which comes as a consequence of transformation of eq. (4) to SDP (5).

Lemma 5. Let s∗ be the minimal value,Â, B̂ the estimates, εA, εB upper bounds andK0 the obtained
controller of the SDP with which we stop the Algorithm 1. Then it holds:∥∥∥∥( √2εAI√

2εBK0

)(
zI − Â− B̂K0

)−1
∥∥∥∥
H∞
≤
√
s∗.

Next we show a result which show an upper bound on the norm of resolvent of perturbed matrix.

Lemma 6. Let D ∈ Rd×d with ρ(D) < 1. Then for ε ≤ 1−ρ(D)
2ρ(D) it holds:

∥∥∥(zI − (1 + ε)D)
−1
∥∥∥
H∞
≤ 2

1− ρ(D)

(
1 +

1

d− 1

(
1 +

4(‖D‖2F −
∣∣Tr(D2)

∣∣)
ρ(D)2(1− ρ(D)2)

)) d−1
2

Proof. By Corollary 3 we have:

∥∥∥(zI − (1 + ε)D)
−1
∥∥∥
H∞
≤ 1

1− (1 + ε)ρ(D)

(
1 +

1

d− 1

(
1 +

4(1 + ε)2(‖D‖2F −
∣∣Tr(D2)

∣∣)
(1− (1 + ε)ρ(D))2

)) d−1
2

Plugging in the bound ε ≤ 1−ρ(D)
2ρ(D) we obtain the result.

In what comes next we will denote

f(D) :=
2

1− ρ(D)

(
1 +

1

d− 1

(
1 +

4(‖D‖2F −
∣∣Tr(D2)

∣∣)
ρ(D)2(1− ρ(D)2)

)) d−1
2

.

Proposition 3. Let s∗ be the minimal value,Â, B̂ the estimates, εA, εB upper bounds and K0 the
obtained controller of the SDP with which we stop the Algorithm 1 Denote D = Â+ B̂K0. Then it
holds:

ρ(A∗ +B∗K0) <
1

1 + ε
,

where ε = min

(
1−ρ(D)
2ρ(D) ,

√
1+(1/s∗−1)‖D‖f(D)−1

2‖D‖f(D)

)
.

Proof. Observe that the condition ρ(A∗+B∗K0) < 1
1+ε is equivalent to ρ(A′∗+B′∗K0) < 1, where

we denote by A′∗ = (1 + ε)A∗, B
′
∗ = (1 + ε)B∗. Let us further denote by Â′ = (1 + ε)Â, B̂′ =

(1 + ε)B̂ and ε′A = (1 + ε)εA, ε
′
B = (1 + ε)εB .

From the discussion in section 2.1 we obtain that the sufficient condition for ρ(A′∗ +B′∗K0) < 1 is:∥∥∥∥( √2ε′AI√
2ε′BK0

)(
zI − Â′ − B̂′K0

)−1
∥∥∥∥
H∞

< 1,
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which is equivalent to: ∥∥∥∥( √2εAI√
2εBK0

)
(zI − (1 + ε)D)

−1

∥∥∥∥
H∞

<
1

1 + ε
,

Next denote by C =

( √
2εAI√

2εBK0

)
and bound:∥∥∥C (zI − (1 + ε)D)

−1
∥∥∥
H∞

=
∥∥∥C ((zI −D)

−1
+ ε (zI −D)

−1
D (zI − (1 + ε)D)

−1
)∥∥∥
H∞

≤
∥∥∥C (zI −D)

−1
∥∥∥
H∞

(
1 + ε ‖D‖

∥∥∥(zI − (1 + ε)D)
−1
∥∥∥
H∞

)
,

where we used the equality (X + Y )−1 = X−1 + X−1Y (X + Y )−1. Then by Lemmas 5 and 6
follows: ∥∥∥C (zI − (1 + ε)D)

−1
∥∥∥
H∞
≤ s∗ (1 + ε ‖D‖ f(D)) .

The right hand side is smaller than 1/(1+ε) by setting ε = min

(
1−ρ(D)
2ρ(D) ,

√
1+(1/s∗−1)‖D‖f(D)−1

2‖D‖f(D)

)
.

For such a choise of ε then follows:

ρ(A∗ +B∗K0) <
1

1 + ε
.

Since matrix Â+ B̂K0 and s∗ are known while running the algorithm, we can compute ε given in
Proposition 3 and hence we found γ, defined as γ = 1

1+ε , which we can compute, and for which it
holds ρ(A∗ +B∗K0) ≤ γ < 1.

C.2 Refined analysis of OSLO’s warm-up phase

Next we present the pseudo code of the warm-up (Phase II) of X-OSLO and provide a refined analysis
given in Cohen et al. (2019) in which they show that running Phase II for O(

√
T ) rounds tightens the

estimates of A∗, B∗ enough that we can start with optimistic exploitation and at the same time yields
the regret of order Õ(

√
T ).

Algorithm 2 Phase II: Tighten the bounds

1: Input:K0 from Phase I, T
2: Denote κ0 = max(1, ‖K0‖)
3: for i = 1, . . .O(

√
T ) do

4: observe state xi
5: play ui ∼ N (K0xi, 2σ

2κ2
0I)

6: end for

Before starting with the analysis let us state some useful results which will come handy. First we
state a result which with high probability bounds the norm of zero mean Gaussians.

Theorem 5 (Hanson-Wright (Proposition 1.1 in (Hsu et al., 2012))). Let x ∼ N (0, In) and let
A ∈ Rm×n. Denote by Σ = A>A. Then for all z > 0 it holds:

P
(
‖Ax‖2 > Tr(Σ) + 2

√
Tr(Σ2)z + 2 ‖Σ‖ z

)
≤ e−z

Corollary 4. Let x ∼ N (0,Σ). Then for any δ ∈ (0, 1
e ) it holds with probability at least 1− δ:

‖x‖2 ≤ 5 Tr(Σ) log
1

δ
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Proof. Since δ ∈ (0, 1
e ) it holds log 1

δ > 1. Hence if we set z = log 1
δ we have

√
z ≤ z. Inserting

z = log 1
δ to Theorem 5 we have that it holds w.p at least 1− δ:

‖x‖2 ≤ Tr(Σ) + (2 ‖Σ‖F + 2 ‖Σ‖) log
1

δ
.

Hence it is enough to show that ‖Σ‖ , ‖Σ‖F ≤ Tr(Σ). Since Σ is symmetric positive semi-definite
matrix its eigenvalues are equal to singular values. Hence it is enough to show:√∑

i

λi(Σ)2 ≤
∑
i

λi(Σ).

Since (∑
i

λi(Σ)

)2

−
∑
i

λi(Σ)2 =
∑
i 6=j

λi(Σ)λj(Σ) ≥ 0,

we have ‖Σ‖F ≤ Tr(Σ). For every matrix it also holds ‖Σ‖ ≤ ‖Σ‖F , hence we showed that
‖Σ‖ , ‖Σ‖F ≤ Tr(Σ).

To analyze the case when we would like to utilize ρ(A∗ +B∗K0) < 1 we further need to know how
to bound the norm of power of closed loop matrix. The following theorem and its corollary will come
handy.
Theorem 6 (Theorem 2.16 in (Dowler, 2013)). Let A ∈ Rd×d be a square matrix and let Γ be a
positively oriented Jordan curve in complex plane which contains ball B(ρ(A)) in its interior. Then
it holds:

Ak =
1

2πi

∫
Γ

zkRA(z)dz.

Lemma 7 (Matrix power norm bound). Let A ∈ Rd×d with ρ(A) < 1. Then it holds:

∥∥Ak∥∥ ≤ (1 + ρ(A)

2

)k+1
2

1− ρ(A)

(
1 +

1

d− 1

(
1 +

4(‖A‖2F −
∣∣Tr(A2)

∣∣)
(1− ρ(A))2

)) d−1
2

Proof. Since ρ(A) < 1 the curve which parametrizes the circle ∂B
(

1+ρ(A)
2

)
in the positive way

contains in its interior all the eigenvalues of A. Hence we can use Theorem 6 and compute∥∥Ak∥∥ ≤ 1

2π

∫
∂B( 1+ρ(A)

2 )
|z|k ‖RA(z)‖ dz

≤ 1

π(1− ρ(A))

(
1 +

1

d− 1

(
1 +

4(‖A‖2F −
∣∣Tr(A2)

∣∣)
(1− ρ(A))2

)) d−1
2 ∫

∂B( 1+ρ(A)
2 )

|z|k dz

=

(
1 + ρ(A)

2

)k+1
2

1− ρ(A)

(
1 +

1

d− 1

(
1 +

4(‖A‖2F −
∣∣Tr(A2)

∣∣)
(1− ρ(A))2

)) d−1
2

,

where we used Theorem 4 in the second inequality.

Now we present the refined analysis of Cohen et al. (2019) where we leverage the knowledge of
ρ(A∗ +B∗K0) < 1. From Proposition 3 we obtain that there exist γ, which we can compute after
Phase I, with ρ(A∗ +B∗K0) ≤ γ < 1. In the rest of this section we denote by

C0 =
2

1− γ

(
1 +

1

d− 1

(
1 +

4(‖A∗ +B∗K0‖2F −
∣∣Tr((A∗ +B∗K0)2)

∣∣)
γ2(1− γ)2

)) d−1
2

.

Since we know an upper bound ϑ with ‖(A B)‖ ≤ ϑ we can compute an upper bound for C0 after
we finish with Phase I.
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Lemma 8. Let x0, x1, . . . be a sequence of states starting from state x0 and generated by dynamics
(1) following a policy K0, obtained from Algorithm 1. Then we have:

‖xi‖ ≤ C0

(
1 + γ

2

)i+1

‖x0‖+
2C0

1− γ
i−1
max
j=0
‖wj‖

Proof. Since we stick to the policy K0, we have xi+1 = (A + BK0)xi + Bηi + wi+1, where
ηi ∼ N (0, 2κ2

0σ
2I). From there it follows:

xi = (A+BK0)ix0 +

i−1∑
j=0

(A+BK0)i−j−1(Bvj + wj+1).

Using first triangle inequality and then Lemma 7 we obtain:

‖xi‖ ≤
∥∥(A+BK0)i

∥∥ ‖x0‖+

i−1∑
j=0

∥∥(A+BK0)i−j−1
∥∥ ‖Bvj + wj+1‖

≤ C0

(
1 + γ

2

)i+1

‖x0‖+ C0
k

max
i=1
‖wi‖

∞∑
i=0

(
1 + γ

2

)i
= C0

(
1 + γ

2

)i+1

‖x0‖+
2C0

1− γ
i−1
max
j=0
‖Bvj + wj+1‖

In the next lemma we will apply a corollary 4 of Hanson-Wright inequality and bound the maximal
norm of the noise.
Lemma 9. Let δ ∈ (0, 1

e ). With probability at least 1− δ for all i = 1, . . . T0 holds:

‖xi‖ ≤ C0

(
1 + γ

2

)i+1

‖x0‖+
2
√

5C0σ

1− γ

√
(d+ 2kκ2

0ϑ
2) log

T0

δ

Proof. In order to use Lemma 8 we need to bound maxT0−1
j=0 ‖Bηj + wj+1‖. Since Bηj + wj+1 ∼

N (0, 2σ2κ2
0BB

> + σ2I) we can use Corollary 4. For every 0 ≤ j ≤ T0 − 1 it holds w.p. at least
1− δ

T0
:

‖Bηj + wj+1‖2 ≤ 5σ2(d+ 2κ2
0 ‖B‖

2
F ) log

T0

δ
.

Using union bound and Lemma 8 we obtain that it holds w.p. at least 1− δ:

‖xi‖ ≤ C0

(
1 + γ

2

)i+1

‖x0‖+
2
√

5C0σ

1− γ

√
(d+ 2kκ2

0ϑ
2) log

T0

δ
,

which finishes the proof.

The rest of the analysis which shows that running Phase II for Õ(
√
T ) rounds yields a controller

with tight enough estimates to start Phase III is very similar to the analysis presented in the proof of
Theorem 20 in (Cohen et al., 2019) and hence we omit it here.

C.3 Optimal infinite horizon cost upper bound

We can start with Phase III of X-OSLO when we have estimates Â, B̂ with ‖(Â B̂)− (A∗ B∗)‖2F ≤
c
α5

0σ
10

ν5ϑ
√
T

. Here α0 = min(λmin(Q), λmin(R)), c universal constant, σ, ϑ, T as defined above and ν
an upper bound for the optimal expected infinite horizon cost J∗. We need upper bound ν in order
to know when we can start with Phase III. We now show how we can compute ν from the optimal
solution of SDP with which we finish Phase I of X-OSLO.
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If we choose action ui = Kxi, whereK ∈ Rk×d is fixed matrix for which it holds ρ(A∗+B∗K) < 1,
then the infinite horizon cost associated with this policy is equal to the solution of the minimization
problem (c.f. (Cohen et al., 2018)):

min
X�0

Tr((Q+K>RK)X),

s.t. X = (A∗ +B∗K)X(A∗ +B∗K)> + σ2I.
(11)

We denote the expected infinite horizon cost for such a policy with J(A∗, B∗,K). We will now show
that we obtain the same result if we replace equality constraint in (11) with PSD inequality one.

Lemma 10. Let ν∗ be minimal value of (11) and ν′ minimal value of

min
X�0

Tr((Q+K>RK)X),

s.t. X � (A∗ +B∗K)X(A∗ +B∗K)> + σ2I.
(12)

Then it holds ν∗ = ν′.

Proof. Since constraint in (12) is weaker than the constraint in (11) we have ν∗ ≥ ν′. To prove the
equality we will show that in the optimal solution of minimization problem (12) it holds: X = (A∗ +
B∗K)X(A∗+B∗K)>+σ2I. Suppose that forX it holdsX � (A∗+B∗K)X(A∗+B∗K)>+σ2I
but not X = (A∗ + B∗K)X(A∗ + B∗K)> + σ2I. Then there exist E � 0, E 6= 0 such that:
X − E = (A∗ + B∗K)X(A∗ + B∗K)> + σ2I. We will show that then also X − E satisfy the
constraints of problem (12). Since:

X − E � (A∗ +B∗K)(X − E)(A∗ +B∗K)> + σ2I

⇐⇒ X − E � (A∗ +B∗K)X(A∗ +BK∗)
> − (A∗ +BK∗)E(A∗ +BK∗)

> + σ2I

⇐⇒ X − E � X − E − (A∗ +B∗K)E(A∗ +B∗K)>

⇐⇒ 0 � −(A∗ +B∗K)E(A∗ +B∗K)>,

X−E indeed satisfy the constraints of (12). Since Tr((Q+K>RK)X) > Tr((Q+K>RK)(X−
E)) we obtain that in the optimal solution of (12) we have the equality in the constraint and it holds
ν∗ = ν′.

The next lemma will show how can we remove the σ2 term from constraint to the minimization term.

Lemma 11. The minimal value of the optimization problem (11) is equal to the optimal value of:

min
X�0

σ2 Tr((Q+K>RK)X),

s.t. X = (A∗ +B∗K)X(A∗ +B∗K)> + I.
(13)

Proof. First notice that the optimal value of (11) is equal to:

lim
T→∞

1

T

T∑
i=0

E
(
x>i Qxi + u>i Rui

)
.

Since ui = Kxi we obtain:

lim
T→∞

1

T

T∑
i=0

E
(
x>i Qxi + u>i Rui

)
= lim
T→∞

1

T

T∑
i=0

E
(
x>i Qxi + x>i K

>RKxi
)

= lim
T→∞

1

T

T∑
i=0

Tr
((
Q+K>RK

)
E[xix

>
i ]
)

= Tr

((
Q+K>RK

)
lim
T→∞

1

T

T∑
i=0

E[xix
>
i ]

)
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Let us look at the term limT→∞
1
T

∑T
i=0 E[xix

>
i ]. Since xi =

∑i
j=1(A∗ +B∗K)i−jwj we obtain:

lim
T→∞

1

T

T∑
i=0

E[xix
>
i ] = lim

T→∞

1

T

T∑
i=0

E

 i∑
j=1

(A∗ +B∗K)i−jwjw
>
l ((A∗ +B∗K)>)i−j


= σ2 lim

T→∞

1

T

T∑
i=0

E

 i∑
j=1

(A∗ +B∗K)i−j
wj
σ

wl
σ

>
((A∗ +B∗K)>)i−j

 .
Hence (due to the linearity of trace operator) if we calculate as if that the process noise has covariance
matrix equal to I we need to multiply the infinite horizon cost with σ2 to obtain the true infinite
horizon cost.

To finish we will first show a result presented by Dean et al. (2019) and then use it to to arrive at an
upper bound for J∗.
Lemma 12. Let X,K = ZX−1, s be a feasible solution for SDP (5). Then it holds:

J(A∗, B∗,K) ≤ 1

1−
√
s
J(Â, B̂,K).

Lemma 13. Let s∗, X,K be parameters of the optimal solution of SPD problem which are returned
by Algorithm 1. Then it holds:

J∗ ≤ σ2

1−
√
s∗

Tr((Q+K>RK)X)

Proof. First we will use the fact that if a matrix is positive semi definite then all its minors are also
positive semi definite. Since s∗, X,K are optimal solution to SDP (5) they are also feasible solution
and hence we have: (

X − I (Â+ B̂K)X

X(Â+ B̂K)> X

)
� 0.

Since X � 0, the latter is by Schur’s complement lemma equivalent to:

X − I − (Â+ B̂K)XX−1X(Â+ B̂K)> � 0.

Reordering the terms we obtain:

X � (Â+ B̂K)X(Â+ B̂K)> + I

Since X � (Â+ B̂K)X(Â+ B̂K)> + I , we obtain:

J(Â, B̂,K) ≤ σ2 Tr
((
Q+K>RK

)
X
)
.

To finish the proof let us use lemma 12:

J∗ ≤ J(A∗, B∗,K) ≤ 1

1−
√
s∗
J(Â, B̂,K) ≤ σ2

1−
√
s∗

Tr
((
Q+K>RK

)
X
)
.
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D Certainty equivalent control

In this section we first show a theorem which show that the regret of X-CEC is bounded by Õ(
√
T ).

We then further provide pseudo code of algorithm CEC, introduced by Simchowitz and Foster (2020),
which we use as Phase II and III of algorithm X-CEC.
Theorem 7. Let δ ∈ (0, 1

T ). Then the Regret of the X-CEC algorithm is bounded by:

RT = O

(√
k2dT log

1

δ

)
.

Proof Sketch. By Theorem 2 of Simchowitz and Foster (2020) the regret of Phase II and III is

bounded by O
(√

k2dT log 1
δ

)
. Since running eXploration as Phase I adds Õ(1) to the total regret

the result follows.

Note that since δ ∈ (0, 1
T ) the factor log 1

δ is of order log T . Hence the regret scale asymptotically as
O(
√
T log T ). We included the state and action dimension in the O(·), due to the lower bound on

regret by Simchowitz and Foster (2020) which states that any algorithm suffers at least Ω(
√
k2dT ).

Let us know show the pseudo code of CEC. In the pseudo code we use the notation P (Ai, Bi) =
DARE(Ai, Bi, Q,R) and K(Ai, Bi) = −(R+B>i P (Ai, Bi)Bi)

−1B>i P (Ai, Bi)Ai.

As long as the variable safe in Algorithm 3 is set on False we are in the Phase II and play ui ∼
N (K0xi, I). Once we can with high probability ensure that the obtained estimates are close to the
true underlying system we set variable safe to True and start with Phase III, where we greedily
exploit the tightness of the estimates, while we additionally explore by injecting Gaussian noise
with variance scaling with O(1/

√
i). Note that the end of Phase II is again as the end of Phase I

completely data dependent.

Algorithm 3 Phase II and III of X-CEC: Tighten the bounds and exploit greedily

1: Input: K0 with ρ(A∗ +B∗K0) < 1, δ
2: safe = False, K = K0, σ2 = 1
3: for i = 1, . . . do
4: observe state xi
5: if i = 2j then
6: Let (Ai, Bi, Vi) be OLS estimators and covariance matrix from samples 2j−1, . . . , 2j − 1
7: if safe = False then
8: Confi = 6λmin(Vi)

−1(n log 5 + log(4i2 det(3Vi)/δ)) (∞, if det(Vi) = 0)
9: if Vi � I and 1/Confi ≥ 54 ‖P (Ai, Bi)‖5 then

10: safe = True
11: Bsafe = {(A,B)| ‖A−Ai‖ ≤ Confi, ‖B −Bi‖ ≤ Confi}
12: σ2

in =
√
d ‖P (Ai, Bi)‖9/2 max(1, ‖Bi‖)

√
log(‖P (Ai, Bi)‖ /δ)

13: end if
14: else if safe = True then
15: Let (Ãi, B̃i) be projection of (Ai, Bi) on Bsafe

16: K = K(Ãi, B̃i)
17: σ2 = i−1/2 min(1, σ2

in)
18: end if
19: end if
20: play ui ∼ N (Kxi, σ

2I)
21: end for
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E Controller analysis

The section consists of two parts. In first part we prove that with the right choice of controller Ki

the OLS estimator is inconsistent and in the second part we prove Theorem 3. The setting in this
section is the following. The system evolves as xi+1 = A∗xi + ui + wi+1, x0 = 0, where xi ∈ Rd,
A ∈ Rd×d, ui = Kixi and (wi)i≥1

i.i.d.∼ N (0, σ2I). We define the RLS estimator of A∗ as

As = argmin
A

s−1∑
i=0

‖xi+1 − ui −Axi‖+ λ ‖A‖2F .

A similar derivation as in appendix A would show that we have:

(As −A∗)> = (Vs + λI)−1Ss − λ(Vs + λI)−1A>, (14)

where Vs =
∑s−1
i=0 xix

>
i and Ss =

∑s−1
i=0 xiw

>
i+1. We obtain the OLS estimator Aos of A∗ by setting

λ = 0 in RLS.

E.1 Inconsistency of OLS in case d > 1

The construction will be based on the inconsistency of OLS estimator. Nielsen (2008) and Phillips
and Magdalinos (2013) shows that in the case when A∗ is irregular and the system evolves as
xi+1 = A∗xi + wi+1, the OLS estimator is inconsistent. Their result shows that

(Aos −A∗)> =

(
s−1∑
i=0

xix
>
i

)−1 s−1∑
i=0

xiw
>
i+1

does not converge in probability towards zero. To show that we can take such actions ui, which
will lead to inconsistent OLS estimator Aos of matrix A∗ we will assume that we know matrix A∗,
however we would still like to compute its OLS estimator. For that select ui as ui = (2Id −A∗)xi.
Since ui is a measurable function of xi it is also a measurable function of (xj)j≤i. With such a
control the system evolves as:

xi+1 = A∗xi + ui + wi+1 = A∗xi + (2Id −A∗)xi + wi+1 = 2Idxi + wi+1.

At the same time for OLS estimator Aos it holds:

(Aos −A∗)
>

=

(
s−1∑
i=0

xix
>
i

)−1 s−1∑
i=0

xiw
>
i+1 (15)

Since 2Id is irregular matrix, the right hand side of the eq. (15) by result of Nielsen (2008) does not
converge towards zero. Hence we have shown that there exist a sequence of measurable actions for
which the OLS estimator does not converge.

E.2 Proof of Theorem 3

The strategy will be the following. We first use eq. (14) to bound:

‖As −A∗‖ ≤
∥∥∥(Vs + λI)−

1
2

∥∥∥ ∥∥∥(Vs + λI)−
1
2Ss

∥∥∥+ λ ‖A‖
∥∥(Vs + λI)−1

∥∥ ,
and then show that

∥∥∥(Vs + λI)−
1
2

∥∥∥ = O(1/
√
s) and

∥∥∥(Vs + λI)−
1
2Ss

∥∥∥ = O(1)
(
d log s+ log 1

δ )
)
.

The toughest part is to show that
∥∥∥(Vs + λI)−

1
2

∥∥∥ = O(1/
√
s), which is equivalent to show that

Vs � Ω(s)I . Let us begin with a simple lemma which was proven in (Sarkar and Rakhlin, 2019).

Lemma 14. Let P,Q ∈ Rd×d such that P � 0. Assume ‖Q‖P−1 ≤ γ. Then for every vector v for
which it holds v>Pv = α we have:

∥∥v>Q∥∥ ≤ √αγ
Next we show a decomposition of Vs to three parts. We will later show that the sum of the first two
terms contribute at least −Θ(log s) and the last term at least Ω(s) to the smallest eigenvalue of Vs
with high probability.
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Lemma 15. Let yi = (A∗ +Ki)xi. Then for every s ≥ 1 it holds:

Vs =

s−2∑
i=0

yiy
>
i +

s−2∑
i=0

(
yiw
>
i+1 + wi+1y

>
i

)
+

s−2∑
i=0

wi+1w
>
i+1

Proof. By inserting Vs =
∑s−1
i=0 xix

>
i and use the initial condition x0 = 0 we obtain:

Vs =

s−1∑
i=0

xix
>
i =

s−1∑
i=1

xix
>
i =

s−2∑
i=0

xi+1x
>
i+1

=

s−2∑
i=0

((A∗ +Ki)xi + wi+1)((A∗ +Ki)xi + wi+1)> =

s−2∑
i=0

(yi + wi+1)(yi + wi+1)>

=

s−2∑
i=0

(
yiy
>
i + yiw

>
i+1 + wi+1y

>
i + wi+1w

>
i+1

)
=

s−2∑
i=0

yiy
>
i +

s−2∑
i=0

(
yiw
>
i+1 + wi+1y

>
i

)
+

s−2∑
i=0

wi+1w
>
i+1

We now show an upper bound on the norm of middle term, normalized with the regularized first term
of the Vs decomposition.
Lemma 16. Let us be in setting of this section. Then it holds w.p. at least 1− δ:

∀s ≥ 1 :

∥∥∥∥∥
s−2∑
i=0

yiw
>
i+1

∥∥∥∥∥
2

(
∑s−2
i=0 yiy

>
i +I)

−1

≤ 8σ2d

(
log s+ log

5M2
1M

2
2

δ1/d

)

Proof. Denote by Fs = σ ((wi)i≤s) and F = (Fs)s≥0. With this notation (yi)i≥0 is stochastic
process in Rd adopted to filtration F . Further denote by V = I . Now we apply Lemma 3 with ε = 1

2
and obtain:

∀s ≥ 1 :

∥∥∥∥∥
s−2∑
i=0

yiw
>
i+1

∥∥∥∥∥
2

(
∑s−2
i=0 yiy

>
i +I)

−1

≤ 8σ2 log

det
(∑s−2

i=0 yiy
>
i + I

)
det(I)

5d

δ

 . (16)

Since
s−2∑
i=0

yiy
>
i �

s−2∑
i=0

‖yi‖2 I �
s−2∑
i=0

‖A∗ +Ki‖2 ‖xi‖2 I �M2
2M

2
1 (s− 1)I,

it holds

det

(
s−2∑
i=0

yiy
>
i + I

)
≤ det

(
M2

1M
2
2 sI
)

=
(
M2

1M
2
2 s
)d
.

Therefore the upper bound from eq. (16) is upper bounded by

8σ2 log

det
(∑s−2

i=0 yiy
>
i + I

)
det(I)

5d

δ

 ≤ 8σ2 log

(
(5M2

1M
2
2 s)

d

δ

)

= 8σ2d

(
log s+ log

5M2
1M

2
2

δ1/d

)
,

which concludes the proof.

Next we show that the sum of first two terms contributes at least −Θ(log s) towards the smallest
eigenvalue of Vs.
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Lemma 17. For any u ∈ Sd−1 it holds w.p at least 1− δ for every s ≥ 1:

u>
s−1∑
i=0

yiy
>
i u+ u>

s−2∑
i=0

(
yiw
>
i+1 + wi+1y

>
i

)
u ≥ −8σ2d

(
log s+ log

5M2
1M

2
2

δ1/d

)
− 1

Proof. First observe that the LHS can be rewritten as:

u>
s−1∑
i=0

yiy
>
i u+ 2u>

s−2∑
i=0

yiw
>
i+1u = u>Pu+ 2u>Qu,

where P =
∑s−1
i=0 yiy

>
i and Q =

∑s−2
i=0 yiw

>
i+1 By Lemma 16 we have:

‖Q‖(P+I)−1 ≤

√
8σ2d

(
log s+ log

5M2
1M

2
2

δ1/d

)
Denote by u>(P + I)u = α2. Then we have by Lemma 14:

∥∥u>Q∥∥ ≤ α√8σ2d

(
log s+ log

5M2
1M

2
2

δ1/d

)
Hence:

u>Pu+ 2u>Qu = u>(P + I)u+ 2u>Qu− 1

≥ α2 − 2
∥∥u>Q∥∥ ‖u‖ − 1

= α2 − 2
∥∥u>Q∥∥− 1

≥ α2 − 2α

√
8σ2d

(
log s+ log

5M2
1M

2
2

δ1/d

)
− 1

The last expression is quadratic function in α which attains its minimum at

α =

√
8σ2d

(
log s+ log

5M2
1M

2
2

δ1/d

)
.

Plugging this expression for α we arrive at:

u>Pu+ 2u>Qu ≥ −8σ2d

(
log s+ log

5M2
1M

2
2

δ1/d

)
− 1.

Next theorem tells us how to bound the smallest singular value of a matrix which rows are independent
Gaussian vectors. We will use this theorem to first show that that the last term of Vs decomposition
is lower bounded by Ω(s)I in Corollary 5. We then join this result with result from Lemma 17 to
obtain Vs � Ω(s)I in Proposition 4.

Theorem 8 (Corollary 5.35 in Vershynin (2010)). Let W be a s × d matrix, whose rows are
independent N (0, I) random vectors in Rd. Then for every t ≥ 0 with probability at least 1− e− t

2

2

it holds:
√
s−
√
d− t ≤ σd(W )

Corollary 5. Let (wi)i≥1
i.i.d.∼ N (0, σ2I). Then for every s ≥ 1 it holds w.p. at least 1− δ :

s−1∑
i=1

wiw
>
i � σ2

(
√
s− 1−

√
d−

√
2 log

1

δ

)2

I
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Proof. First observe
∑k−1
i=1 wiw

>
i = σ2W>W , where

W> =
(

1
σw1

1
σw2 · · · 1

σws−1

)
∈ Rd×(k−1).

From Theorem 8 it follows σd(W ) ≥
√
s− 1 −

√
d −

√
2 log 1

δ , which implies σd(W>W ) ≥(√
s− 1−

√
d−

√
2 log 1

δ

)2

.

Proposition 4. Let us be in the setting of this section. Then it holds for all s ≥ 1 w.p. at least 1− δ:

Vs � σ2

(√s−√d−√2 log
2

δ

)2

− 8d

(
log s+ log

5M2
1M

2
2

δ1/d

)
− 1

 I

Proof. By Lemma 15 we have:

Vs =

s−2∑
i=0

yiy
>
i +

s−2∑
i=0

(
yiw
>
i+1 + wi+1y

>
i

)
+

s−2∑
i=0

wi+1w
>
i+1

Let u ∈ Sd−1 be arbitrary. We will now lower bound u>Vku:

u>Vsu = u>
s−2∑
i=0

yiy
>
i u+ 2u>

s−2∑
i=0

yiw
>
i+1u︸ ︷︷ ︸

Part 1

+u>
s−2∑
i=0

wiw
>
i u︸ ︷︷ ︸

Part 2

.

By Lemma 17 part 1 is lower bounded by−8σ2d
(

log s+ log
5M2

1M
2
2 21/d

δ1/d

)
−1 w.p. at least 1− δ

2 . By

Corollary 5 the part 2 term is lower bounded w.p. at least 1− δ
2 by σ2

(√
s− 1−

√
d−

√
2 log 2

δ

)2

.
Using union bound we obtain that w.p. at least 1− δ it holds:

u>Vsu ≥ σ2

(
√
s− 1−

√
d−

√
2 log

2

δ

)2

− 8σ2d

(
log s+ log

5M2
1M

2
2 21/d

δ1/d

)
− 1.

Since u ∈ Sd−1 was arbitrary we obtain that w.p. at least 1− δ it holds:

Vs � σ2

(√s− 1−
√
d−

√
2 log

2

δ

)2

− 8d

(
log s+ log

5M2
1M

2
2 21/d

δ1/d

)
− 1

 I,

which concludes the proof.

Since by Proposition 4 we have σd(Vs) ≥ O(s) it also holds: σd(Vs + λI) ≥ σd(Vs) ≥ O(s). Now
the proof of Theorem 3 easily follows. By application of Lemma 3 with ε = 1

2 we further obtain that
it holds w.p. at least 1− δ:

∥∥∥(Vs + λI)−
1
2Ss

∥∥∥2

≤ 8σ2 log

det
(∑s−1

i=0 xix
>
i + λI

)
det(λI)

5d

δ


≤ 8σ2 log

(
((s− 1)M1 + λ)

d

λd
5d

δ

)

= 8σ2d

(
log

(s− 1)M1 + λ

λ
+ log

5

δ1/d

)
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Using union bound we obtain that it holds w.p. at least 1− 2δ:

‖As −A∗‖ ≤
8d
(

log (s−1)M1+λ
λ + log 5

δ1/d

)
√((√

s− 1−
√
d−

√
2 log 2

δ

)2

− 8d
(

log s+ log
5M2

1M
2
2 21/d

δ1/d

)
− 1

)
+

λ ‖A∗‖

σ2

((√
s− 1−

√
d−

√
2 log 2

δ

)2

− 8d
(

log s+ log
5M2

1M
2
2 21/d

δ1/d

)
− 1

)

Hence we have established that ‖As −A∗‖ ≤
O(1)(d log s+log 1

δ )√
s

. The same analysis as in the proof
of Theorem 1 then shows that in this setting eXploration finishes in constant (in T ) time.
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F Additional experiments

We will first run additional experiments on system (8) and then present the behavior of some
controllers also on larger and more explosive system. Let us first show the similarity in performance
of CEC and robust controller.

0 100 200 300 400 500
Number of steps

100

101
Trajectory norm history

Trajectory norm history CEC
Trajectory norm history Robust
End of Phase 1 CEC
End of Phase 1 Robust

Figure 3: Comparison of CEC and robust con-
troller

We empirically observe that if we use CEC,
Phase I usually ends a bit faster and the norm of
states are comparable to the case when we use
robust controller. However sometimes, as is also
the case in one among 20 runs in the experiment
shown in tables below, the states magnitude at
the beginning increase much more compared to
the case of robust control.

In the following tables we present the results of
Table 1 more in depth. We analyze 3 variables
- steps taken (S), total cost (C) and per step
cost (PsC) until we end Phase I in different
settings. We present average, standard deviation
and median of variables S and C and average of
PsC. The Steps Taken and Cost from Table 1
are here Savg and Cavg. Every setting we run
for 20 times with the same collection of random
seeds. We present two cases with either true
estimation error upper bounds or data-dependent
ones. For the data-dependent upper bounds we use Corollary 2 which also holds for the multi episodic
setting. To compute the estimators in multi episodic setting we use whole trajectories from the
episodes and not just the last ones, for which Dean et al. (2019) derived upper bounds.

Rollout length Savg Sstd Smed Cavg Cstd Cmed PsCavg

6 60 22 54 1.47 · 103 7.57 · 102 1.30 · 103 2.39 · 101

10 62 30 55 2.23 · 103 1.49 · 103 1.78 · 103 3.39 · 101

15 64 25 67 3.45 · 103 1.62 · 103 3.24 · 103 5.53 · 101

M
ul

ti
tr

aj
.

20 78 39 65 5.87 · 103 3.70 · 103 5.06 · 103 6.98 · 101

Table 2: Phase I statistics in Multi episodic setting with true estimation errors

Rollout length Savg Sstd Smed Cavg Cstd Cmed PsCavg

6 161 25 158 3.81 · 103 7.81 · 102 3.57 · 103 2.38 · 101

10 171 23 159 6.47 · 103 8.01 · 102 6.57 · 103 3.84 · 101

15 202 42 210 1.11 · 104 3.03 · 103 1.03 · 104 5.56 · 101

M
ul

ti
tr

aj
.

20 224 39 221 1.66 · 104 3.26 · 103 1.57 · 104 7.55 · 101

Table 3: Phase I statistics in Multi episodic setting with data-dependent estimation error bounds

As expected the per step cost PsCavg is not much influenced in multi episodic setting whether we
use true estimation (not available in practice) errors or looser data-dependent ones. At the same time
for Ki = 0 in single trajectory setting using data-dependent upper bounds and running Phase I a bit
longer significantly increases PcSavg since we let the system grow exponentially for a bit longer
time. At the same time we observe that using any among controllers CEC, robust controller or mixed
controller with either CEC (MCEC) or robust one (MRobust) the PsCavg is not much influenced.
We further observe that using controller MCEC or MRobust significantly reduces the number of steps
taken in Phase I compared to the use of pure CEC or robust controller.

29



Controller Savg Sstd Smed Cavg Cstd Cmed PsCavg

Ki = 0 31 10 28 4.56 · 103 5.06 · 103 2.94 · 103 1.31 · 102

NegCEC 13 2 12 8.00 · 105 1.02 · 106 3.21 · 105 6.30 · 104

CEC 21 11 18 7.55 · 104 3.23 · 105 5.35 · 102 8.36 · 103

Robust 20 19 14 2.47 · 103 4.83 · 103 7.71 · 102 2.78 · 102

MCEC, M = 10 16 5 15 2.04 · 103 7.30 · 102 1.76 · 103 1.28 · 102Si
ng

le
tr

aj
.

MRobust, M = 10 13 2 14 1.98 · 103 8.19 · 102 1.65 · 103 1.58 · 102

Table 4: Phase I statistics in Single-Trajectory setting with true estimation errors

Controller Savg Sstd Smed Cavg Cstd Cmed PsCavg

Ki = 0 268 39 262 2.90 · 109 9.47 · 109 2.21 · 108 8.65 · 106

NegCEC 18 2 18 2.51 · 108 5.47 · 108 4.73 · 107 1.36 · 107

CEC 288 75 313 7.96 · 104 3.26 · 105 4.34 · 103 6.26 · 103

Robust 375 39 396 7.38 · 103 4.09 · 103 6.27 · 103 2.05 · 101

MCEC, M = 10 65 18 60 8.61 · 103 2.22 · 103 8.32 · 103 1.33 · 102Si
ng

le
tr

aj
.

MRobust, M = 10 44 9 43 6.12 · 103 1.08 · 103 5.75 · 103 1.42 · 102

Table 5: Phase I statistics in Single-Trajectory setting with data-dependent estimation error bounds

In the following we test the influence of margin M on the controller MCEC on a bit larger and more
explosive system:

A∗ =

1.5 1.0 0.4 2.3
0.0 1.3 1.3 1.1
0.0 0.0 1.0 0.7
0.0 0.0 0.0 0.8

 , B∗ =

0.6 0.7 0.3
0.8 1.1 1.1
1.2 0.2 2.3
2.1 0.4 0.4

 , R = I, Q = I, (17)

with σ2 = σ2
u = 1.
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Figure 4: Comparison of different choices for M . With larger M Phase I finishes faster, however the
norm of the states can grow more during that time.

In Figure 4 we compare MCEC controllers with different margins M . In case M = 0, MCEC is in
fact the same as CEC. We observe that with larger M we find controller faster at the cost of larger
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state sizes. It is then up to the controller designer to decide how large M can he tolerate. Note that
for many systems the size of the norm state is hard constraint and we do not want to breach it. Is such
a case it is probably the best to use either pure robust or CEC controller during the eXploration phase.

To prove that controller stabilizes the underlying system we need to solve SDP (5). With the following
experiment we would like to give some intuition on how small the estimation error needs to be in
order for SDP (5) to be feasible. For that consider the case when state and action are one dimensional.
For every Â, B̂ we we search for the largest ε such that the SDP (5) is feasible with εA = εB = ε. In
other words we search for the largest perturbation ε for which SDP (5) finds a controller K which
stabilizes all the systems in the set {(A,B)|‖Â−A‖ ≤ ε, ‖B̂ −B‖ ≤ ε}. In Figure 5 we show the
plot ε(Â, B̂).
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(a) Perturbation analysis from side
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Figure 5: The size of the perturbation ε for which SDP (5) still finds a stabilizing controller.
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